
www.manaraa.com

University of Miami
Scholarly Repository

Open Access Dissertations Electronic Theses and Dissertations

2012-04-21

Hierarchical Multi-Label Classification: Going
Beyond Generalization Trees
Peerapon Vateekul
University of Miami, peerapon.vateekul@gmail.com

Follow this and additional works at: https://scholarlyrepository.miami.edu/oa_dissertations

This Open access is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarly Repository. It has been accepted for
inclusion in Open Access Dissertations by an authorized administrator of Scholarly Repository. For more information, please contact
repository.library@miami.edu.

Recommended Citation
Vateekul, Peerapon, "Hierarchical Multi-Label Classification: Going Beyond Generalization Trees" (2012). Open Access Dissertations.
723.
https://scholarlyrepository.miami.edu/oa_dissertations/723

https://scholarlyrepository.miami.edu?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F723&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F723&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/etds?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F723&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F723&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations/723?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F723&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository.library@miami.edu

www.manaraa.com

UNIVERSITY OF MIAMI

HIERARCHICAL MULTI-LABEL CLASSIFICATION: GOING BEYOND
GENERALIZATION TREES

By

Peerapon Vateekul

A DISSERTATION

Submitted to the Faculty
of the University of Miami

in partial fulfillment of the requirements for
the degree of Doctor of Philosophy

Coral Gables, Florida

May 2012

www.manaraa.com

c©2012
Peerapon Vateekul
All Rights Reserved

www.manaraa.com

UNIVERSITY OF MIAMI

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

HIERARCHICAL MULTI-LABEL CLASSIFICATION: GOING BEYOND
GENERALIZATION TREES

Peerapon Vateekul

Approved:

Miroslav Kubat, Ph.D.
Associate Professor of Electrical
and Computer Engineering

Terri A. Scandura, Ph.D.
Dean of the Graduate School

Kamal Premaratne, Ph.D.
Professor of Electrical and Computer
Engineering

Akmal A. Younis, Ph.D.
Associate Professor of Electrical and
Computer Engineering

Nigel M. John, Ph.D.
Lecturer of Electrical and Com-
puter Engineering

Maria M. Llabre, Ph.D.
Professor of Psychology

www.manaraa.com

VATEEKUL, PEERAPON (Ph.D., Electrical and Computer
Engineering)

Hierarchical Multi-Label Classification:
Going Beyond Generalization Trees

(May 2012)

Abstract of a dissertation at the University of Miami.

Dissertation supervised by Professor Miroslav Kubat.
No. of pages in text. (183)

Traditional computational approach to automated classification assumes that each

object should be assigned to only one out of two or more classes. However, some real-

world applications digress from this generic scenario in two important ways. First,

each example can belong to several classes simultaneously (multi-label classification).

Second, the classes can be hierarchically ordered in the sense that some are more

specific versions of others (hierarchical classification). Seeking to address both of

these issues, the presented work deals with “hierarchical multi-label classification.”

The task has recently received considerable attention; databases in various fields,

including web repositories, digital libraries, or genomics, are known to be organized as

hierarchies. Seeking to start with something relatively simple, scientists have focused

on the special case where the inter-class relations are captured by tree-structured

hierarchy. This, however, is not enough. Very often, some classes have more than one

parent, in which case the mutual relations (if they are known) have to be described by

a hierarchy structured as a directed acyclic graph (DAG). This dissertation intends

to contribute to this more general problem.

Literature survey indicates that, in non-hierarchical multi-label classification,

good performance is achieved when a Support Vector Machine (SVM) is used to

induce each class separately. This said, some experiments suggest that further im-

www.manaraa.com

provement can be achieved by explicitly dealing with the problem of imbalanced train-

ing sets because, in most classes, negative examples heavily outnumber positive ones.

The author proposes a solution in terms of a technique referred to as R-SVM; the

idea is to re-adjust the SVM-hyperplane offset accordingly. Experiments in the first

part of this dissertation rely on data from domains of text-categorization.

More important, however, is then the second part that focuses on hierarchical

multi-label classification. Here, the author proposes a new technique, HR-SVM, that

essentially constitutes a hierarchical extension of R-SVM proceeding in a top-down

fashion from more general to more specific classifiers. The weakness of this approach

is known as “error propagation”: examples misclassified at higher levels are propa-

gated down the hierarchy, thus resulting in negative performances at the lower levels.

HR-SVM contains a mechanism to correct this kind of errors. The system has been

subjected to extensive experiments with many domains from the field of gene function

prediction. The results show that the new technique compares favorably with other

existing approaches along various performance criteria.

www.manaraa.com

To my beloved parents

iii

www.manaraa.com

Acknowledgements

I would like to express my gratitude to all those who gave me the possibility to

complete this dissertation. First, thanks in large part to the kindness and considerable

mentoring provided by Professor Miroslav Kubat, my dissertation advisor. His help,

advice, and encouragement guided the way for this long journey. He has absolutely

been a pleasure to work with. I want to offer my heart felt thanks to committee

members, Professor Kamal Premaratne, Professor Akmal A. Younis, Professor Nigel

M. John, and Professor Maria M. Llabre who gave insightful comments and invaluable

suggestions to improve this research.

This work would not have been possible without the financial support of Thai

Government Scholarship and Behavioral Medicine Research Center (BMRC) at the

Department of Psychology. I am especially indebted to Dr. Nunta Vanicsetakul and

Dr. Kanoksri Sarinnapakorn, for their invaluable assistance and advice especially in

statistical methods in the dissertation. I am very grateful to Dr. Feng Zhao, my

supervisor at the Behavioral Medicine Research Center (BMRC).

Professor Mei-Ling Shyu also deserves a great deal of thanks. I thank my col-

leagues at BMRC and friends at UM Thai Student Organization, the Department of

Electrical and Computer Engineering, and the Department of Psychology for their

support and encouragement. Particular thanks go to Decho Surangsrirat for his help-

ful research discussions. Sareewan Dendamrongvit, my best friend, deserves many

thanks for her help and support during these past years. In addition, I thank all my

beloved and best friends in my life for their encouragement and great friendship.

iv

www.manaraa.com

Nobody has been more important to me in the pursuit of this project than the

members of my family. I would like to express my utmost gratitude to my parents,

Niphon and Suporn, whose love and guidance are with me in whatever I pursue. Their

unlimited support made everything possible to help me make it this far.

Peerapon Vateekul

University of Miami

May 2012

v

www.manaraa.com

Table of Contents

LIST OF FIGURES xi

LIST OF TABLES xix

1 INTRODUCTION 1

1.1 Motivation . 2

1.1.1 Multi-label Classification . 2

1.1.2 Hierarchical Classification . 3

1.2 Challenges and Research Objective 7

1.3 Summary of Contributions . 9

1.4 Organization of the Dissertation . 11

2 MULTI-LABEL CLASSIFICATION 12

2.1 Problem Statement . 13

2.2 General Approach . 15

2.3 Overview of Algorithms . 18

2.3.1 Decision Trees . 18

vi

www.manaraa.com

2.3.2 Support Vector Machine . 21

2.3.3 Associative Classification . 28

2.4 Related Work . 30

2.5 Performance Evaluation . 32

2.5.1 Classical Classification Criteria 32

2.5.2 Multi-label Classification Criteria 33

2.6 Conclusion . 33

3 HIERARCHICAL CLASSIFICATION 35

3.1 Specifics of Hierarchical Classification 36

3.1.1 Definition . 36

3.1.2 Class Relationship . 37

3.1.3 Problem Statement . 38

3.1.4 Taxonomy and Ontology . 40

3.2 General Approach . 41

3.2.1 Flat Classification Approach 41

3.2.2 Local Classification (or Top-Down) Approach 42

3.2.3 Global Classification (or Big-Bang) Approach 49

3.3 Related Work . 50

3.3.1 Related Work on Flat Classification Approach 50

3.3.2 Related Work on Local (or Top-Down) Classification Approach 51

3.3.3 Related Work on Global (or Big-Bang) Classification Approach 53

vii

www.manaraa.com

3.4 Performance Evaluation . 55

3.5 Conclusion . 58

4 LEARNING FROM LARGE SCALE, IMBALANCED,

AND MULTI-LABEL DOMAINS 60

4.1 Multi-Label Data Sets . 61

4.2 Classifier Induction from Decision Trees 64

4.2.1 FDT Concepts . 66

4.2.2 The FDT Program . 68

4.2.3 Experiments and Discussion 69

4.2.4 Performance Comparison to SVM 74

4.3 Classifier Induction from Optimized Support Vector Machine 76

4.3.1 Threshold Adjustment . 78

4.3.2 R-SVM Concepts . 81

4.3.3 Experiments and Discussion 85

4.4 Conclusion . 95

5 LEARNING FROM HIERARCHIES IN FUNCTIONAL

GENOMICS 99

5.1 HR-SVM Concepts . 101

5.1.1 Exclusive Parent Training Policy (EPT) 103

5.1.2 Local Feature Selection (LFS) 106

viii

www.manaraa.com

5.1.3 False-Positive Correction (FPC) 108

5.1.4 R-SVM . 110

5.1.5 Complexity Analysis . 112

5.2 Proposed Evaluation . 113

5.3 Experimental Data . 116

5.4 Experiments . 119

5.4.1 The system’s performance compared to previous work 120

5.4.2 Contributions of HR-SVM’s modules 122

5.4.3 Performance at different hierarchical levels 128

5.5 Conclusion . 132

6 CONCLUSION AND FUTURE WORK 134

6.1 Summary and Contributions . 135

6.2 Future Research Direction . 138

APPENDIX A MISSING VALUE IMPUTATION 141

A.1 Missing Data and Imputation . 142

A.1.1 Types of Missing Values . 142

A.1.2 Related Works . 143

A.2 The Proposed Tree-Based Approach 145

A.2.1 Imputation Tree . 145

A.2.2 Schema of Missing Data Treatment 147

ix

www.manaraa.com

A.3 Experiments . 149

A.3.1 Simulated Data . 150

A.3.2 Pima Indians Diabetes Database (PIMA) 150

A.3.3 Generating Missing Data . 151

A.4 Results and Discussions . 153

A.5 Conclusion . 155

APPENDIX B MORE EXPERIMENTAL RESULTS OF HR-SVM 161

Bibliography 174

x

www.manaraa.com

List of Figures

1.1 Parts of top levels of the open web directory project (ODP) whose

hierarchical structure is a tree. 4

1.2 Parts of top levels of the immune system processes in Gene Ontology

(GO) whose hierarchical structure is a directed acyclic graph (DAG). 5

1.3 Function annotation process. Genes’ functions are determined in bi-

ological experiments. The goal of the dashed box is to predict these

functions represented by GO codes. 6

2.1 A sample decision tree showing decisions at the nodes and final classi-

fication at the leaves. 19

2.2 An example of the problem in a decision tree based on the information

gain criterion. 21

2.3 Linear SVM classifier in a binary classification problem when two

classes can be linearly separated. The separation hyperplane H0 is

also called a hard decision boundary. 23

xi

www.manaraa.com

2.4 Linear SVM classifier in a binary classification problem when two

classes cannot be linearly separated. The examples in grey circles are

outliers. The separation hyperplane H0 is also called a soft decision

boundary. 25

2.5 Mapping from the original space, S, with one attribute (left) to the

higher dimensional space, S ′, with three attributes (right) by using the

function Φ(x). 27

3.1 Examples of hierarchies. 37

3.2 Examples of consistent and inconsistent class assignments. The circles

in bold represent the categories assigned to an example xi by a classifier. 39

3.3 Flat classification approach in hierarchical classification. Circles rep-

resent classes and each dashed rectangle encloses the classes predicted

by a classifier. 42

3.4 A hierarchy for the explanation of the training data preparation process. 43

3.5 Local classifier per node. Circles represent classes and each dashed

square encloses the classes predicted by a binary classifier. 47

3.6 Local classifier per parent node. Circles represent classes and each

dashed square encloses the classes predicted by a multi-class (multi-

label) classifier. 47

3.7 Local classifier per level. Circles represent classes and each dashed

rectangle encloses the classes predicted by a multi-class (multi-label)

classifier. 48

xii

www.manaraa.com

3.8 The scenario in which the hierarchical criteria correction must be ap-

plied. Circles represent classes and each dashed rectangle encloses the

classes predicted by a binary classifier. 49

3.9 Global classification approach. A dashed rectangle represents that this

approach uses only a single special classification for the whole class

hierarchy. 50

3.10 DAG-to-Tree transformation (Nguyen et al. 2005). 52

3.11 (a) An example of a class hierarchy with a vector vi representing an

example belonging to the classes {1, 2, 2.2}, indicating in a bold path.

(b) Each leaf of the Clus-HMC’s classifier (tree) shows the probability

for each class in the hierarchy. 54

3.12 An example of a DAG-structured hierarchy. 56

4.1 An essential framework of FDT. 68

4.2 CPU time and size of trees with varied percentages of removed attributes. 70

4.3 A comparison in the performance of varied percentages of removed

attributes using the feature pre-selection mechanism. 71

4.4 CPU time on varied sizes of data. 73

4.5 CPU time on varied numbers of subsets. 73

4.6 A comparison in the performance of varied numbers of subclassifiers.

X-axis represents the number of subclassifiers and Y -axis represents

measures in performance criteria. 75

4.7 SVM hyperplanes before (left) and after (right) threshold adjustment.

The classification of three examples is corrected. 79

xiii

www.manaraa.com

4.8 The R-SVM based framework. 82

4.9 Illustration of the three potential best thresholds on the data set with

10 examples. 83

4.10 Classification performance and the additional computational time in-

curred by threshold modification of R-SVM when the BST method

was used to generate training subsets. 97

4.11 Classification performance and the additional computational time in-

curred by threshold modification of R-SVM when the PT method was

used to generate training subsets. 98

5.1 An example class hierarchy of immune system processes in the field of

Gene Ontology (GO). 100

5.2 (a) An example of the DAG-structured class hierarchy. The gray node

is a class with multiple parents. (b) A conceptual view of top-down

classifiers from Classifier C2 until Classifier C2.2.2. 102

5.3 The HR-SVM’s general architecture. 103

5.4 The LFS flowchart. 107

5.5 A scenario in which C2 misclassifies a C1’s example as positive (FP). 109

5.6 The propagated error shown in Figure 5.5 is fixed by the FPC strategy. 110

5.7 A scenario in which C2 misclassifies a C2.2.2’s example as negative

(FN). 111

5.8 A non-biased classifier, R-SVM, is induced as a baseline classifier in

order to solve the FN issue. 112

xiv

www.manaraa.com

5.9 Comparing the performance (along F1) of H-SVM, HR-SVM-ALL, and

Clus-HMC. The integers over each of the vertical bars give the ranks as

obtained by the ANOVA methodology followed by Bonferroni multiple

comparisons. 121

5.10 Comparing HR-SVM with H-SVM in terms of F1. The stars above

some of the bars indicate significant improvements according to t-tests

(0.05 level). 123

5.11 Comparing HR-SVM with H-SVM in terms of recall. The stars above

some of the bars indicate significant improvements according to t-tests

(0.05 level). 124

5.12 Comparing HR-SVM-FPC with HR-SVM in terms of F1. The stars

above some of the bars indicate significant improvements according to

t-tests (0.05 level). 125

5.13 Comparing HR-SVM-FPC with HR-SVM in terms of precision. The

stars above some of the bars indicate significant improvements accord-

ing to t-tests (0.05 level). 125

5.14 Comparing HR-SVM-ALL with HR-SVM-FPC in terms of F1. The

stars and circles above some of the bars indicate significant improve-

ments and declines according to t-tests (0.05 level). 127

5.15 Comparing HR-SVM-ALL with HR-SVM-FPC in terms of precision.

The stars and circles above some of the bars indicate significant im-

provements and decline according to t-tests (0.05 level). 127

5.16 Comparing HR-SVM-ALL, H-SVM, and Clus-HMC at different hier-

archical levels in D0. 130

xv

www.manaraa.com

5.17 Comparing F1 of HR-SVM-ALL, H-SVM, and Clus-HMC at different

class hierarchical levels in D16. 131

6.1 Examples of the conflict at the testing phase. The mark marks and the

“no” signs denote classifying as positive and negative respectively. . . 139

A.1 The ITree based framework. 148

A.2 Average RMSE of six imputation methods at different levels of missing

probability on two population data (2POP). X-axis is the probability

of missing and Y-axis is the average RMSE. The number above each

bar provides ranking of the performance. 157

A.3 Average RMSE of six imputation methods at different levels of miss-

ing probability on normal distribution data (NORM). X-axis is the

probability of missing and Y-axis is the average RMSE. The number

above each bar provides ranking of the performance. 158

A.4 Average RMSE of six imputation methods at different levels of miss-

ing probability on lognormal distribution data (LOGN). X-axis is the

probability of missing and Y-axis is the average RMSE. The number

above each bar provides ranking of the performance. 159

A.5 Average RMSE of six imputation methods at different levels of missing

probability on Pima Indians Diabetes data (PIMA). X-axis is the

probability of missing and Y-axis is the average RMSE. The number

above each bar provides ranking of the performance. 160

xvi

www.manaraa.com

B.1 Comparing the performance (along F1) of H-SVM, HR-SVM-ALL, and

Clus-HMC. The integers over each of the vertical bars give the ranks as

obtained by the ANOVA methodology followed by Bonferroni multiple

comparisons. 164

B.2 The effect of R-SVM: Comparing HR-SVM with H-SVM in terms of

F1. The stars above some of the bars indicate significant improvements

according to t-tests (0.05 level). 165

B.3 The effect of R-SVM: Comparing HR-SVM with H-SVM in terms of

recall. The stars above some of the bars indicate significant improve-

ments according to t-tests (0.05 level). 166

B.4 The effect of FPC: Comparing HR-SVM-FPC with HR-SVM in terms

of F1. The stars above some of the bars indicate significant improve-

ments according to t-tests (0.05 level). 167

B.5 The effect of FPC: Comparing HR-SVM-FPC with HR-SVM in terms

of precision. The stars above some of the bars indicate significant

improvements according to t-tests (0.05 level). 168

B.6 The effect of LFS: Comparing HR-SVM-ALL with HR-SVM-FPC in

terms of F1. The stars and circles above some of the bars indicate

significant improvements and declines according to t-tests (0.05 level). 169

B.7 The effect of LFS: Comparing HR-SVM-ALL with HR-SVM-FPC in

terms of precision. The stars and circles above some of the bars indicate

significant improvements and decline according to t-tests (0.05 level). 170

B.8 Comparing HR-SVM-ALL, H-SVM, and Clus-HMC at different hier-

archical levels in D13. 171

xvii

www.manaraa.com

B.9 Comparing HR-SVM-ALL, H-SVM, and Clus-HMC at different hier-

archical levels in D14. 171

B.10 Comparing HR-SVM-ALL, H-SVM, and Clus-HMC at different hier-

archical levels in D15. 172

B.11 Comparing HR-SVM-ALL, H-SVM, and Clus-HMC at different hier-

archical levels in D17. 172

B.12 Comparing HR-SVM-ALL, H-SVM, and Clus-HMC at different hier-

archical levels in D18. 173

B.13 Comparing HR-SVM-ALL, H-SVM, and Clus-HMC at different hier-

archical levels in D19. 173

xviii

www.manaraa.com

List of Tables

2.1 Macro-averaging and micro-averaging of the performance criteria on

the data set with k classes. 34

3.1 Notations for negative and positive training examples (Silla and Freitas

2010). 44

3.2 The hierarchical version of precision, recall, and F1 for an example i. . 56

3.3 The micro-averaging version of hierarchical precision, hierarchical re-

call, and hierarchical F1 of n examples. 57

3.4 Hierarchical performances for each example (Table 3.2) of classifiers Φ1

and Φ2 on the data set S. 57

3.5 The macro-averaging version of hierarchical precision, hierarchical re-

call, and hierarchical F1 of n examples. 58

4.1 The characteristics of data sets in multi-label domains. 62

4.2 The pseudocode of FDT . 69

4.3 CPU time on varied numbers of subclassifiers 73

4.4 Performance comparison among the baseline decision tree, FDT, and

SVM. 76

xix

www.manaraa.com

4.5 A comparison between R-SVM and SVMcv to find the estimate of the

output threshold θ which can be described by Equation 4.1. 84

4.6 The pseudocode of R-SVM . 86

4.7 The statistics of experimental data sets in R-SVM after our pre-processing. 87

4.8 Performance comparison of R-SVM among different methods of gener-

ating training subsets. Within each dataset, the techniques are sorted

by their F1. For the reader’s convenience, we also provide the ANOVA

ranks. 89

4.9 Performance of diverse threshold-adjustment techniques. For each data

set, the techniques are sorted by their F1. The top rows, “SVM”

and “Best F1 on Test,” define the lower bound and upper bound,

respectively. The performance of ScutFBR is essentially the same as

that of SVMCV . 92

4.10 Performance comparison of R-SVM and SVMF1
. The boldface font

indicates that the improvement is statistically significant. The numbers

in parentheses give the performance edge of the given technique over

the original SVM. 93

4.11 The comparison of R-SVM and SVMCV . The boldface font indicates a

statistically significant improvement. The numbers in parentheses give

the performance edge of the given technique over the original SVM. . 94

5.1 Comparing the training sets generated by the EPT and EAT. 105

5.2 An example of hierarchical classification results. 114

xx

www.manaraa.com

5.3 The true class matrix T (top) and the predicted class matrix P (bot-

tom) for the examples from Table 5.2. 115

5.4 Properties of data sets used in experiments: the numbers of exam-

ples |D|, attributes |A|, classes |C|, and hierarchical levels |H|. “M?”

indicates whether a data set includes missing values – yes (Y) or no (N).117

5.5 Evolution of HR-SVM’s framework. 120

5.6 The total induction time (in seconds) of HR-SVM-ALL and two other

systems, H-SVM and Clus-HMC. 121

5.7 Hierarchical systems (see also Table 5.5) whose performance is to be

compared. 122

5.8 Induction time (in seconds) of the top-down hierarchical classification

systems from Table 5.5. In each column, the percentages in the paren-

theses give the time increase over the previous column. 122

5.9 Expected impact of four aspects: (i) the training-set size, (ii) the

number positive examples, (iii) the degree of imbalance, and (iv) the

downward-propagated errors. “>” indicates an increase and “<” indi-

cates a decrease. 129

5.10 Statistics for D0’s hierarchical levels. 130

5.11 The number of classifiers with F1 = 0 in D0. 130

5.12 Statistics for D16’s hierarchical levels. 131

5.13 The number of classifiers with F1 = 0 in D16. 132

6.1 The statistics of the challenging data sets in the 2nd LSHTC. MD

refers to the maximum depth of the hierarchy. 140

xxi

www.manaraa.com

A.1 The pseudocode for generating missing data. 146

A.2 The pseudocode of ITree . 151

A.3 Summary of four experiments . 152

B.1 An example of the prediction in the matrix form. Assume that there

are 8 classes in the hierarchy and 10000 examples in the data set. . . 163

xxii

www.manaraa.com

CHAPTER 1

Introduction

Access to electronically stored data can be improved by automated categorization,

supported by an appropriate indexing scheme. However, manual creation of such a

scheme is impractical due to the size of data (e.g., millions of documents in digital

repositories) and the costs of human experts (e.g., in gene function annotation). This

is why some machine-learning scientists have explored possibilities of automating the

process. The idea is to manually classify only a subset of examples, and then induce

a mechanism to be used to automatically annotate (classify) the rest.

This dissertation explores techniques for “hierarchical multi-label classification.”

Two issues have to be considered. First, each instance can belong to more than

one class at the same time, and the classifier should correctly identify as many of

them as possible without labeling the document with non-relevant ones (multi-label

classification). Second, the categories are not independent of each other; their mutual

relations are expressed by generalization trees or directed acyclic graphs (hierarchical

classification).

Multi-label classification is encountered in many areas, for instance, a medical

patient may suffer from more than one health condition: diabetes, high blood pres-

1

www.manaraa.com

2

sure, high cholesterol. Likewise, a book can be categorized into multiple categories:

engineering, technology, science, computers. A movie can straddle several film genres:

science fiction, horror, action, and adventure. Scene analysis may result in several

semantic classes: beach, ocean, sky, sunset, and mountain. This dissertation was

originally motivated by data in domains of text categorization.

The problem of hierarchical classification has received less attention, and yet it

has many important applications, too. Database collections are often organized as hi-

erarchies as typically seen in web-based repositories, digital libraries, patent libraries,

email folders, even in product catalogs. The particular application targeted by this

dissertation is gene function prediction: given an unknown gene (example), the task

is to classify its functions (classes) referring to a predefined function hierarchy, such

as Gene Ontology (GO). For instance, a gene product “Actin, alpha cardiac muscle

1” is labeled with the “heart contraction” function, but the same gene also belongs to

all ancestor functions of the heart contraction function, including blood circulation,

heart process, circulator system process, system process, etc. This is what is referred

to as “the hierarchy constraint”.

1.1 Motivation

1.1.1 Multi-label Classification

Perhaps the oldest application of multi-label classification is text categorization where

the task is to label text documents with predefined categories. The work summarized

in this dissertation started with EUROVOC1, a large multilingual thesaurus contain-

1http://europa.eu/eurovoc/ and http://langtech.jrc.it/Eurovoc.html

www.manaraa.com

3

ing tens of thousands of documents, each described by about one hundred thousand

features. Sarinnapakorn and Kubat (2007) reported that 90% of these documents are

labeled with 2 to 5 classes from the total of 30 classes (at the highest hierarchical

level). An important problem when dealing with data files of this size is the possibly

prohibitive computational costs.

In order to deal with this domain, some researchers have developed mechanisms

for induction of multi-label classifiers (Chang and Lin 2011), while others preferred

to induce a separate binary classifier for each class (Joachims 1998; Kwok 1998)2.

The success of the latter approach is often impaired by the phenomenon known as

“imbalanced training sets”—positive examples outnumbering the negative ones or

the other way round. Traditional machine learning techniques are known to operate

poorly in domains of this kind.

The dissertation seeks to address both of these problems: the overwhelming size

of the data, and the imbalanced representation of classes in them.

1.1.2 Hierarchical Classification

When the number of classes is large, it is often helpful to organize them in groups and

subgroups. For instance, large collections of web pages can be organized in conceptual

hierarchies such as the one from Figure 1.1. From an information retrieval viewpoint,

this hierarchical arrangement is essential because such organization makes it possible

for the user to focus on the most appropriate level of detail.

2More details of related work in this kind of domains are described in Section 2.4.

www.manaraa.com

4

Only a few papers have so far dealt with this topic, most of them constraining

their work by certain limitations3. For example, some papers (Jensen et al. 2002;

Riley 1993; Weinert and Lopes 2004; Berman et al. 2000) ignore the hierarchical

relationship among classes, and simply transform the hierarchical problem to single-

level classification. Others (Sun and Lim 2001; Koller and Sahami 1997) rely on a

tree hierarchy where each class has at maximum one parent (Figure 1.1). However,

in many real-world databases, some classes have more than one parent; in that case,

the inter-class relations can only be captured by a directed acyclic graph (DAG)

(Figure 1.2). Domains characterized by DAG-structured hierarchy constitute a still

under-explored research area.

Root

BusinessArts Computers

TVMovies Jobs Investing Internet Software

Figure 1.1: Parts of top levels of the open web directory project (ODP) whose hier-
archical structure is a tree.

In summary, hierarchical classification can help increase interpretability and ac-

cessibility of databases, and the number of real-world domains benefitting from is

growing. This said, it is surprising how little has been done in terms of relative re-

search especially when the hierarchy structure is DAG (Table 4 in Silla and Freitas

(2010)). This observation motivates this dissertation. From the perspective of appli-

cation domain, the dissertation will focus on “gene function prediction,” an important

task in the field of bioinformatics.
3More information about related work is provided by Section 3.3.

www.manaraa.com

5

Biological process

Immune system

process

Immune

system

development

Immune

response

Tolerance

induction

Immune

effector

process

Innate

immune

response

Humoral

immune

response

Figure 1.2: Parts of top levels of the immune system processes in Gene Ontology
(GO) whose hierarchical structure is a directed acyclic graph (DAG).

Motivation of Gene Function Prediction

The problem of functional annotation in genes is of great importance for the

biomedical and bioinformatics communities (Stein 2001). Although the completion of

numerous whole-genome sequences have been studied and provided in the past decade,

their values are only as good as their annotation. Genomics research, therefore, aims

to study behavior (function) of genes in various organisms under different conditions,

leading us to an understanding of the underlying mechanisms of diseases and being

able to provide indications for the development of target efficient treatment.

However, the lab processes to exploit the functions of genes, such as microarray

expression analysis, RNA interference, etc., are very expensive and time-consuming

since they involve many manual experiments by experts. Thus, the methods of au-

tomated gene function prediction provide hypothetical annotations, which can drive

the biological validation and discovery of novel functions of genes and gene product,

www.manaraa.com

6

and, thus, reduce the experimental burden. Figure 1.34 illustrates the process of

gene function prediction. The functional classes are referred to Gene Ontology (GO)

(Ashburner et al. 2000).

A set of features

of studied genes

Function

Prediction

Gene Ontology

GO codes for

genes’ functions

Biological

experiments

Gene list

Figure 1.3: Function annotation process. Genes’ functions are determined in biologi-
cal experiments. The goal of the dashed box is to predict these functions represented
by GO codes.

In gene function prediction, the number of functional classes is large, and a gene

may belong to many classes at the same time; functional classes are structured accord-

ing to a hierarchy ; classes are usually unbalanced, with more negative than positive

examples; class labels can be uncertain and the annotations largely incomplete.

GO is a hierarchy designed to cover genomes. Current genomes for which GO

annotations are available for some organisms such as yeasts S. cerevisiae and S.

pombe, the plant Arabidopsis thaliana, mouse M. musculus, worm C. elegans, etc.

The scheme is a major step towards unifying results from multiple genomes and

classifying gene function on a large scale. Its three-way annotation of molecular func-

tion, cellular component, and biological process more accurate reflects the current

understanding of the different types of function a gene can have. It allows many-

to-many relationship on gene-to-function (multi-label) and function-to-function (the

DAG structured hierarchy).

4The figure is originally from Figure 7.2 of Kiritchenko et al. (2005).

www.manaraa.com

7

Even with all these different function annotation schemes, there is still the ques-

tion of the suitability of the current functional classes for functional genomics. Kell

and King (2000) conclude that “current lists of functional classes are not driven by

data from whole-organisms studies and are suboptimal for the purposes of functional

genomics,” and recommend that future classification be data driven, and that “induc-

tive methods of machine learning provide the best initial approaches to assign gene

functions.”

Recently, there has been some research on hierarchical classification, but most of

it has focused on text mining (a tree-structured class hierarchy), and not on bioinfor-

matics (a DAG-structured class hierarchy). In this sense, the hierarchical framework

(especially with the DAG structure) is still an under-explored research area.

1.2 Challenges and Research Objective

The objective of this dissertation is the development of a hierarchical multi-label

classification framework that achieves promising classification performance. In order

to accomplish the objective, the work in this dissertation is divided into two main

tasks.

The first task focuses in domains of multi-label classification especially for the

needs of a large scale text corpus. This poses the following challenges:

• The number of examples is extremely high.

• The number of feature is enormous. These features represent all classes of the

whole data collection. Thus, many of them are not relevant to a specific class.

www.manaraa.com

8

• The data space is very sparse. For each example, values of most features are

equal to 0.

• Multi-label examples are often highly imbalanced; some of the classes are heavily

populated while some of the classes only contain a few examples.

These issues result in two serious problems: (i) prohibitive computation cost and

(ii) low predictive power. Thus, the objective of this task is to develop a technique

that performs well in real-world domains while being computationally efficient. From

the machine learning techniques usually used in similar domains, the Support Vector

Machine (SVM) is chosen because it has been shown to to work remarkably well in

text categorization (Joachims 1998). The dissertation will describe an enhanced-SVM

framework addressing all the above issues in an efficient and effective way.

The second task is to extend the developed multi-label classification to support in-

duction of hierarchical classification, especially in the field of gene function prediction.

The following challenges are addressed:

• The prediction of an unknown instance must follow the hierarchy constraint.

• The class hierarchies are no longer constrained to trees, but can be DAG.

• An example does not need to belong to classes at the leaf nodes. Thus, the

method can consider stopping the classification at any nodes in any levels of

the hierarchy, which is called “non-mandatory leaf node prediction.”

• The number of classes in domains of hierarchical classification is usually enor-

mous — even larger than the number of classes in domains of multi-label clas-

www.manaraa.com

9

sification. This means that the imbalance of training data set is extremely

high.

There are many approaches suggested in the field of hierarchical classification

problem as summarized in Section 3.2. One of them is a top-down approach (Koller

and Sahami 1997) by separately generating a binary classifier for each class and

proceeding in a top-down fashion. It has many advantages in terms of simplicity,

efficiency, and suitability to the problem of our interest, the gene function prediction.

Moreover, the baseline classifier for each class can be adopted from our method pro-

posed in the first part of this dissertation. However, the weakness of the top-down

approach is known as “error propagation” where misclassified examples at the up-

per level are propagated downwards the hierarchy and directly affects performance

of classifiers at the bottom level, and also the overall system. This error must be

addressed in the system developed in this part of the dissertation.

For evaluation purposes, the well-known measures of flat classification, such as

precision, recall, and F1, appear to ignore the hierarchical relationship among classes.

Although there have been some alternatives of hierarchical classification measures

proposed, none of them are accepted as a standard measure. Thus, another objective

of this dissertation in hierarchical classification is to propose a performance measure

that can fully address the hierarchical nature.

1.3 Summary of Contributions

For the first part of this dissertation in multi-label classification, all challenges and

objectives have been met. There are two classification frameworks contributed to this

www.manaraa.com

10

domain. The first developed system is called “fast decision-tree induction (FDT)”

(Vateekul and Kubat 2009). Our experiments showed that FDT performed better

than traditional classifiers, such as C4.5 and SVM. Later our preliminary experiments

showed that the performance of SVM can be significantly improved by applying the

threshold adjustment strategy at slight additional computation costs. This inspired

us to study this approach and to propose a new thresholding method called “R-

SVM” (Vateekul et al. 2011) in the second framework in the domain of multi-label

classification.

The hierarchical extended version of R-SVM based on the top-down approach

called “HR-SVM” (H standing for hierarchical) (Vateekul et al. 2012) is presented

in the second part of the dissertation. It avoids the propagated errors from classifiers

at upper levels by fully utilizing the hierarchical information to generate a smaller

and less-imbalanced training data set with misclassified data from parent classifiers

being added in, so that errors can be learnt and corrected at the current classifier.

To evaluate the results, the dissertation introduces a new hierarchical classification

measure called “example-label based macro-averaging measure” which is an extended

version of the well-known flat classification metrics: precision, recall, and F1.

Furthermore, some extra works, which are not directly related to the main task of

the dissertation, have also been established and published. First, a new imputation

method, “Imputation Tree (ITree)” (Vateekul and Sarinnapakorn 2009), has been

proposed to handle data with missing values. Second, the feature selection of FDT is

continuous applied to the classifier proposed by Dendamrongvit et al. (2011).

www.manaraa.com

11

1.4 Organization of the Dissertation

The organization of this dissertation is as follows. Chapter 2 briefly explains an

overview of multi-label classification composing the problem statements, general ap-

proach, related work, and performance criteria. Chapter 3 summarizes the concept

of hierarchical classification in the same way as in the previous chapter. Chapter 4

presents the work in domains of multi-label classification, FDT and R-SVM. Chap-

ter 5 discusses the developed hierarchical classification method called HR-SVM and

introduces the new hierarchical performance measure. Lastly, Chapter 6 concludes

the dissertation and discusses possible directions for future research work.

www.manaraa.com

CHAPTER 2

Multi-label Classification

Multi-label classification – where the same example can belong to two or more classes

at the same time, is encountered in various fields, including text, biology, music,

image, and video. For example, in text categorization, a text document may belong

to many subjects or topics; in biology, one protein may have many effects on a cell;

in music categorization, a piece of music shares many musical genres. Due to the

needs in the broad domains of these applications, the multi-label classification tasks

in these areas are important and have obtained a plethora of research recently.

This chapter gives a definition and summary of work related to multi-label clas-

sification. It starts with a formal statement of a multi-label classification problem

and some relevant basic definitions. Then two general approaches in dealing with

the problem are discussed. Details will be provided on three specific methods that

relate to our experiments. Next a survey of previous work related to multi-label

classification is presented. Finally, the performance of classifiers in this domain is

discussed.

12

www.manaraa.com

13

2.1 Problem Statement

Let X ⊆ R
p be an instance space of p-dimensional features and Y be a finite set of

labels or classes. Each instance x ∈ X has multiple class labels in Y , where Y ⊆ Y .

Given a set of training examples consisting of n instances, S = {(x1, Y1), . . . , (xn, Yn)},

where each instance is independent and identically distributed (i.i.d.) drawn from an

unknown distribution D, xi ∈ X and labels Yi ⊆ Y are known, the goal of multi-

label classification is to learn categories’ properties from labeled examples and find

a multi-label classifier g : X → 2Y that maps an instance x to its label such that

specific performance criteria are optimized. Here, 2Y is the power set of Y , which is

the set of all subsets of Y .

Many machine learning algorithms induce decision rules in the form of ranking

function f : X × Y → R. For a given instance x, the labels in Y can be ordered

according to the scores or values of f(x, .). This ranking function f(x, c) is thus

interpreted as the system’s confidence that x belongs to class c. It is said that label

c1 is ranked higher than c2 if and only if f(x, c1) > f(x, c2). If Y is the set of class

labels of x, then a good learning algorithm will rank labels in Y higher than those not

in Y . A simple classification function, g(x), can be easily obtained from the function

f(x, c) and a threshold, t(x), by labeling x with the classes whose ranking values

exceed t(x):

g(x) = {c|f(x, c) > t(x), c ∈ Y}. (2.1)

The threshold t(x) is usually chosen to be a constant function. The most common

threshold is t(x) = 0 which is similar to the sign function.

www.manaraa.com

14

Classifier’s performance depends greatly on the characteristics of the data to be

classified. One factor that has a certain bearing on the behavior of a multi-label

classifier induced from a data set is the number of labels of each example in the

set. In some applications, the number of labels each example has is large compared

to the total number of labels in the entire data set, whereas in others it is small.

Tsoumakas and Katakis (2007) introduced two pertinent concepts, label cardinality

and label density, that can be used to describe a data set. Denote the cardinality or

“size” of a set Y by |Y |. Here are the definitions of these two notions:

• Label cardinality of data set S is the average number of labels of the examples

in S,

LC(S) =
1

n

n∑

i=1

|Yi|. (2.2)

• Label density of data set S is the average proportion of labels of each example,

LD(S) =
1

n

n∑

i=1

|Yi|
|Y| . (2.3)

Both metrics quantify the number of alternative labels that depict the examples

of a multi-label data set. Label cardinality is independent of the total number of

labels in the classification problem, while label density takes the total number into

account. Two data sets having the same label cardinality but different label density

might exhibit different properties that influence the performance of the multi-label

classification methods. However, these metrics are reported for the sake of complete-

ness, but they will not be used in the dissertation because the multi-label approach

used in this dissertation treats each class separately, and, thus, we will report the

percentage of the positive examples for each class instead of the measure for each

example.

www.manaraa.com

15

2.2 General Approach

Existing multi-label classification methods may be grouped into two main approaches:

1) problem transformation and 2) algorithm adaptation (Tsoumakas and Katakis

2007). The problem transformation approach comprises those techniques that trans-

form the multi-label classification problem into one or more conventional single-label

classification problems. The algorithm adaptation approach comprises any methods

that extend specific learning algorithms in order to cope with multi-labeled examples

directly.

There are a number of ways that one could use to pursue the problem transfor-

mation as follows:

1. Ignore multi-label information. Two straightforward methods are (Boutell et al.

2004a):

• Randomly or subjectively select one of the multiple labels of each multi-

labeled example and dispose of the rest.

• Simply remove every multi-labeled example from the data set.

Obviously these methods have a serious shortcoming of discarding a lot of in-

formation content of the original multi-label data set.

2. Consider each different set of labels that exists in the multi-label data set as

a single label and then train one single-label classifier (Boutell et al. 2004a;

Diplaris et al. 2005). One negative aspect of this method is that it may lead to

data sets with a large number of classes and few examples per class.

www.manaraa.com

16

3. Learn |Y| binary classifiers, one for each different class label c in Y (Boutell

et al. 2004a; Lauser and Hotho 2003). The original data set is transformed into

|Y| data sets such that the cth data set, c = 1, . . . , |Y|, contains all examples of

the original data set, but each example is relabeled as c if the original example

has label c, and c̄ (not c) otherwise. When categorizing a new instance x, this

method gathers and assigns to the new instance the labels output by all binary

classifiers. Transforming a multi-label problem into a number of binary classi-

fication problems is the most common method of the problem transformation

approach. However, this method has some disadvantages (Kang et al. 2006).

• It treats each class label independently, and therefore does not exploit any

correlation among class labels.

• It does not scale very well to a large number of classes since a binary

classifier has to be built for every class.

• It suffers from the unbalanced data problem, particularly when the number

of classes is large.

4. Decompose each example (x, Y) into |Y | examples (x, c) for all c ∈ Y . Then

induce one single-label classifier from the transformed data set using a learning

method that can give to an instance certainty degrees or probabilities for all

labels in Y . A new instance is assigned those labels whose certain degrees

are greater than a set threshold. This method increases the size of training

examples, which is a downside.

Which one of these approaches (transformation and adaptation) depends on the

user’s preferences. In the dissertation, the problem transformation approach is pre-

www.manaraa.com

17

ferred and applied to all presented works. Although there are some limitations for

each way in the selected approach, it is still superior to the other one in terms of

simplicity and generality. By following this approach, all well-known and efficient

algorithms in machine learning can be adopted and applied to any domains of multi-

label classification. Additionally, the issues occurred in the transformation approach

can be alleviated by simple procedures or strategies. For instance, the problem of

imbalanced training data can be lessened by the under- or over- sampling strategies.

On the other hand, the problem adaptation approach requires more algorithmic com-

plexity than the chosen one and it is often designed based on some specific contexts.

Among four variants of the problem transformation approach, the dissertation

chose to follow the third one (the most common method): generating a separate

binary classifier for each class. The first method to ignore multi-label information is

obviously the worst one. Comparing to the rest, Rifkin and Klautau (2004) showed

that the chosen one is as accurate as any other methods if the baseline classifiers are

well-tuned regularized classifier, such as Support Vector Machine in Section 2.3.2.

Apart from the choice of classification methods, there are essentially two different

types of categorization decision that one can make, hard categorization and soft (or

ranking) categorization (Sebastiani 2006; Feldman and Sanger 2007). A hard cate-

gorization decision refers to a binary decision, yes or no, as to whether an instance

x belongs to a category c. A soft categorization decision is the one consisting of at-

tributing a real-valued score or weight to the example-category pair (x, c) indicating

goodness-of-fit between the input document and the category. This score reflects the

degree of confidence of the classifier in the fact that x belongs to category c, which

allows ranking a set of categories in terms of their appropriateness for x, or ranking

www.manaraa.com

18

a set of instances in terms of their appropriateness for category c. A disadvantage of

soft categorization or a ranking algorithm is that it does not output a set of labels

for the example. A group of top scoring categories or all the categories with the

scores above a chosen threshold may be selected. However, the threshold parameter

will need tuning in each problem. The two classification functions, g(x) and f(x, c),

described in Section 2.1 above are used in hard and soft decisions, respectively. Some

classification methods offer the convenience of making both soft and hard decisions,

but some methods only permit one decision type.

2.3 Overview of Algorithms

In this section, three state-of-the-art methods commonly used in this domain along

those approaches in Section 2.2 are described. In addition, they are related to our

prior and ongoing research.

2.3.1 Decision Trees

Decision trees are one of the most popular methods for classification because they

provide simple and interpretable rules. A decision tree learns from data to create a

predictive model having a tree structure; nodes in the tree represent features, with

branches representing conjunctions of features that lead to leaves or terminal nodes

representing classifications. Thus, a decision tree can be viewed as a partitioning of

the instance space into smaller segments such that each partition, represented by a

leaf, contains the instances that are homogeneous and are expected to belong to the

same class. Determining the class of an instance from the decision tree is then a

www.manaraa.com

19

matter of tracing the path of nodes and branches starting at the root node of the tree

to the terminating leaf. Figure 2.1 shows an example of a decision tree that suggests

a suitable transport based on given attributes, the weather and transport conditions.

Car available ?

Weather?

no

car

yes

Temperature?walk bus

walk bus

sunny rainy overcast

warm cold

Figure 2.1: A sample decision tree showing decisions at the nodes and final classifi-
cation at the leaves.

C4.5 is a decision tree generating algorithm developed by Quinlan (1993) and

modified further later by Quinlan (1996). It is an extension of Quinlan’s earlier ID3

induction algorithm (Quinlan 1986) with a number of improvements to account for

unknown attribute values, attributes with differing costs, and bias towards continuous

attributes with numerous distinct values. In addition, it is superior to ID3 for many

view points including a different criterion for determining the best partitioning of the

examples at each decision tree node, “pruned” decision trees to avoid overfitting the

data, and the ability to derive classification rules from the unpruned decision tree.

C4.5 builds decision trees from training data using the information entropy con-

cept to measure how informative a node is. It examines the information gain as

shown in Equation 2.4, where S is a set of training instances, A is an attribute and

a is its value, Sa is a subset of S consisting of the instances with A = a. Entropy(S)

www.manaraa.com

20

is defined in Equation 2.5, where PS(ci) is the percentage of instances belonging to

Class ci in the database, and |C| is the number of classes. The feature having the

highest information gain is the best for discriminating among cases at that node, so

it will be chosen to make the decision.

IG(S, A) = Info(S)− InfoA(S) = Entropy(S)−
∑

a

|Sa|
|S| Entropy(Sa) (2.4)

Entropy(S) = −
|C|∑

i=1

PS(ci)logPS(ci) (2.5)

Although information gain is usually a good measure for deciding the relevance

of an attribute, it is not perfect. A notable problem occurs when information gain is

applied to attributes that can take on a large number of distinct values. For example

in Figure 2.2, a primary key attribute, such as Id, has a high information gain because

it uniquely identifies each example. Assuming there are two classes (pass and fail),

the decision tree in Figure 2.2 can give an answer to only these ten training records

(Id1 - Id10), but cannot predict any other testing data; thus, we do not want to

include this kind of attributes in the decision tree. Hence, in C4.5, Quinlan (1996)

introduced the gain ratio in Equation 2.6 by normalizing the information encoded in

the split itself.

GainRatio(S, A) =
IG(S, A)

SlitInfo(S, A)
(2.6)

C4.5 is a good choice for practical classification due to the ease of its interpretabil-

ity as well as its ability to deal with numeric attributes, missing values, and noisy

data. In their IP traffic flow classification study, Williams et al. (2006) compared four

www.manaraa.com

21

Id

Fail Pass

1 2 10

Pass...

...

Figure 2.2: An example of the problem in a decision tree based on the information
gain criterion.

different machine learning algorithms, Bayesian network, naive Bayes, naive Bayes

tree, and C4.5 decision tree, and concluded that C4.5 was the best suited for real-

time classification tasks. All algorithms provided very similar classification accuracy,

however, the C4.5 algorithm was significantly faster than other methods in terms of

classification speed.

2.3.2 Support Vector Machine

This section gives an introduction to the Support Vector Machine (SVM) (Schölkopf

et al. 1999; Joachims 1998; Joachims 2003; Kwok 1998). It is currently the state-

of-the-art in classification techniques. Benchmarking studies reveal that in general,

the SVM performs best among current classification techniques, due to its ability to

capture-nonlinearity.

Linear Separable Case: SVM was originally developed for dichotomous do-

mains where each example, ~x, is either positive or negative. The data set consists

of pairs, S = {(~x1, y1), ..., (~xn, yn)}, where ~xi is an attribute vector describing the

example, and yi ∈ {−1, +1} is this example’s class label.

www.manaraa.com

22

From a training set, SVM induces a linear hyperplane separating between two

classes as in Equation 2.7, where ~w is a weight vector that determines the hyperplane’s

orientation, and b (bias) determines its offset relative to the system coordinates.

h(~x) = f(~w, b) = ~w · ~x + b = 0 (2.7)

In the case that two classes can be linearly separable as in Figure 2.3, the linear

hyperplane (classifier) H0 which maximizes the margin can be formulated as set of

inequalities over the set of training examples as follows:

Minimize : 1
2
‖w‖2

subject to : y(~xi · ~w + b)− 1 ≥ 0, ∀xi ∈ S

(2.8)

From this formulation it can be stated, that all positive examples, for which

equality holds, lie on the hyperplane H1 : ~xi · ~w + b = 1. Similar, all negative

examples, for which equality holds, lie on the hyperplane H2 : ~xi · ~w + b = −1. The

width of the margin denotes as γ = 2
‖w‖2 ; thus, minimizing 1

2
‖w‖2 in Equation 2.8 is

equivalent to maximizing the margin γ. Those data points for which equality holds

are called support vectors, which are examples surrounded by circles.

SVM that induces a classifier based on the above set of inequalities is called “hard

margin SVM ” because there are no any examples between the hyperplanes H1 and

H2. Equation 2.8 can be reformulated by using a Lagrangian formulation of the

problem. Positive Lagrange multipliers αi, i = 1...|S| are introduced, where each αi is

the inequality constraint for an example xi and |S| denotes the number of examples

in the data set S. To form the Lagrangian, the constraint equations are multiplied

by the Lagrange multipliers and subtracted from the objective function which gives:

www.manaraa.com

23

+

+ +

+

Positive class (y = +1)

Negative class (y = -1)

Margin ɣ

x1

x2

H1 = w·x + b = +1

H0 = w·x + b = 0

H2 = w·x + b = -1

w→
→→

→→

→→

Figure 2.3: Linear SVM classifier in a binary classification problem when two classes
can be linearly separated. The separation hyperplane H0 is also called a hard decision
boundary.

L(~w, b, ~α) =
1

2
‖w‖2 −

|S|∑

i=1

αi(yi(~xi · ~w + b)− 1) (2.9)

In order to solve L(~w, b, ~α), the problem must be transformed to the dual quadratic

optimization problems as follows:

Maximize :
∑|S|

i=1 αi − 1
2

∑
i,j αiαjyiyj ~xi ~xj

subject to : (
∑|S|

i=1 αiyi = 0) ∧ (∀i, αi ≥ 0)

(2.10)

From this optimization problem all αi can be obtained which gives a separating

hyperplane defined by ~w, maximizing the margin γ between training examples in

the linear separable case. Note that the formulation of these optimization problem

replaces ~w with the product of the Lagrangian multipliers and the given training

examples
∑|S|

i=1 αiyi ~xi. Thus, the separating hyperplane can be defined only through

www.manaraa.com

24

the given training patterns ~xi. Additionally, support vectors have a Lagrange multi-

plier of αi ≥ 0 whereas all other training examples have a Lagrange multiplier of zero

(αi = 0). Support vectors lie on one of the hyperplanes H1, H2 and are the critical

examples in the training process. Thus, the weight vector ~w which determines the

hyperplane’s orientation can be written by only the support vectors as follows:

~w =
∑

αi 6=0

αiyi ~xi (2.11)

Also, if all training examples with αi = 0 would be removed, retraining the SVM

produces to the same separating hyperplane. For the remaining parameter, b, of the

hyperplane, it can be solved by using the KKT complementary condition, αi(yi(~w ·

~xi + b) − 1) = 0 where i = 1, ..., |S|, and ~w is obtained by the above equation. The

substitution of each {αi, xi, yi} generates different bi. Thus, it is numerically safer to

take the mean value of all resulting b as follows:

b =
1

|S|(
|S|∑

i=1

(yi − ~w · ~xi)) (2.12)

Once learning ~w and b, SVM uses them to map testing examples to scalar SVM

scores as in Equation 2.13. The predicted class, either positive or negative, is decided

by the sign of these SVM scores.

si = h(~xi) = ~w · ~xi + b (2.13)

Non Separable Case: The above equation holds only for the linear separable

case; however, it is not feasible in the general case because there are often some outliers

within the margin from the separator or even be missclassified as shown in Figure 2.4.

www.manaraa.com

25

To prevent outliers from affecting the hyperplane, the slack variable ξi, i = 1, ..., |S|,

are introduced to relax the hard margin constraints. This kind of SVM is called “soft

margin SVM ” by pursuing the reformulated constraints as follows:

Minimize : 1
2
‖w‖2 + C

∑m

i=0 ξi

subject to : yi(~w · ~xi + b) ≥ (1− ξi), (∀~xi ∈ S ∧ ξ ≥ 0)

(2.14)

+

+ +

+

Positive class (y = +1)

Negative class (y = -1)

Margin ɣ

x1

x2

H1 = w·x + b = +1

H0 = w·x + b = 0

H2 = w·x + b = -1

w→

→→

→→

→→

ξ 2 ξ 3
ξ 1

Figure 2.4: Linear SVM classifier in a binary classification problem when two classes
cannot be linearly separated. The examples in grey circles are outliers. The separation
hyperplane H0 is also called a soft decision boundary.

Whereas the margin was defined by the margin maximization, it now seeks to

simultaneously minimize two conditions: (i) the term of ‖w‖2 to maximize the margin

and (ii) the total classification errors on training data,
∑m

i=0 ξi. The trade-off between

these conditions is controlled by the parameter C where a larger value leads to small

number of misclassifications and smaller margin.

By the definition, ξi’s have to be larger or equal to 0, so that it really mean

slackness. Also, we can observe that if 0 < ξi ≤ 1, such as ξ1, it means the example

www.manaraa.com

26

lies somewhere between the margin and the correct side of hyperplane, and if ξi > 1,

such as ξ2 and ξ3, it means that the example is missclassified.

Again, by applying Lagrangian multipliers, the dual optimization problem can be

formulated as:

Maximize :
∑|S|

i=1 αi − 1
2

∑
i,j αiαjyiyj ~xi ~xj

subject to : (
∑|S|

i=1 αiyi = 0) ∧ (∀i, 0 ≤ αi ≤ C)

(2.15)

The only difference from the hard margin dual form is that αi is bounded by the

trade-off parameter C. Hence, there are three possible solutions for αi. First, αi = 0

and ξi = 0, an example ~xi is correctly classified. Second, 0 < αi < C and ξi = 0,

an example ~xi is called an unbounded support vector which lies on the two margins.

Finally, αi = C and ξi ≥ 1, an example ~xi is called an bounded support vector which

lies on the wrong side of the margin.

Non-Linear SVM’s: Another possibility for learning linear inseparable data is

to map the training data into a higher dimensional space by some mapping func-

tion Φ. According to the theory, by applying an appropriate mapping linear insep-

arable data become separable in a higher dimensional space. Thus, a mapping of

the form is applied on the sequence S of training examples transforming them into

S ′ = {〈Φ(~x1), y1〉...〈Φ(~xm), ym〉}. Thereby, S ′ is the new feature space obtained from

the original space through the mapping Φ. This is also implicitly done by neural

networks (using hidden layers which map the representation).

Figure 2.5 illustrates an example of non-linear mapping on the training data

with one attribute, S, to the higher space with three attributes, S ′. There are two

classes, Y = {−1, 1}, and three examples, x1 = −1, x2 = 0, and x3 = 1 where

www.manaraa.com

27

their corresponding classes are y1 = 1, y2 = −1, and y3 = 1, respectively. On the

one-dimensional space, these examples cannot be linearly separable into two classes.

While, the solution, ~h, can be found in the three-dimensional space, in which each ex-

ample is transformed by using the mapping function Φ(x) = [φ1(x), φ2(x), φ3(x)]T =

[x2,
√

2x, 1]
T
.

x2=[0, 0, 1]
T

Xx1=-1

++ +

ϕ2(x)

ϕ1(x)

ϕ3(x)

++

x2=0 x3=1

x1=[1, -√2, 1]T

x3=[1, √2, 1]TΦ(x) = [ϕ1, ϕ2, ϕ3]
T

→ h

→

→

→ −

−

Figure 2.5: Mapping from the original space, S, with one attribute (left) to the higher
dimensional space, S ′, with three attributes (right) by using the function Φ(x).

One drawback of the mapping is the algorithmic complexity arising from the high

dimensional space S ′, making learning problems virtually intractable. But since learn-

ing and testing SVM’s is defined by evaluating the inner product between training

examples, so called kernel functions can be used to reduce algorithmic complexity and

making infinite spaces tractable. A kernel function κ(xi, xj) for a mapping function Φ

is defined as Φ(~xi)Φ(~xj) = κ(xi, xj). Thus, the dot product of xi · xj in Equation 2.9

can be replaced by κ(xi, xj) in order to map from the original space to a higher space.

The following are common kernel functions:

www.manaraa.com

28

Gaussian RBF : κ(~xi, ~xj) = exp(
−‖~xi− ~xj‖

2

σ
)

Polynomial : κ(~xi, ~xj) = ((~xi, ~xj) + b)d

Sigmoid : κ(~xi, ~xj) = tanh(κ(~xi, ~xj) + b)

(2.16)

where d, c, σ, and θ are constants.

2.3.3 Associative Classification

Associative classification (AC) is a data mining technique that integrates classifica-

tion with association rule mining (ARM) (Agrawal and Srikant 1994; Agrawal et al.

1993) to find the rules from classification benchmarks. A generated rule for classifi-

cation, called “class association rule” (CAR), is an implication of the form of X → c,

where itemset X is non-empty subset of all possible items in the database, X ⊆ I,

I = {i1, i2, ..., in} where n is the number of itemsets, and c is a class identifier,

c ∈ {c1, c2, ..., cm} where m is the number of classes. Let a rule itemset be a pair

< X, c >, containing the itemset X and a class label c. The rules are discovered in

a training data set of transactions Dt. The strength of a rule R can be measured

in terms of its support (sup(R)) and confidence (conf(R)). The support of R is the

percentage of the instances in Dt satisfying the rule antecedent and having class label

c as shown in Equation 2.17. The confidence of R is the percentage of instances in

Dt satisfying the rule antecedent that also have the class label c as shown in Equa-

tion 2.18.

sup(R) = P (X, c) (2.17)

www.manaraa.com

29

conf(R) =
sup(R)

sup(X)
=

P (X, c)

P (X)
= P (c|X) (2.18)

Referring to the support and confidence constraints, the rule X → c is a class

association rule if the following two conditions are satisfied: sup(X → c) ≥ minsup

(minimum support threshold) and conf(X → c) ≥ minconf (minimum confidence

threshold). To find all CARs, many algorithms are commonly decomposed into three

major processes: rule generation, rule selection, and classification. First, the rule gen-

eration process extracts all CARs that satisfy both minimum support and minimum

confidence thresholds from the training data set. Second, the rule selection process

applies pruning techniques to select a small subset of high-quality CARs and builds

an accurate model of the training data set. Finally, the classification process is used

to classify an unknown data instance.

In recent years, some classifiers based on AC have been proposed such as CAEP

(Dong et al. 1999), CMAR (Li et al. 2001), CBA (Liu et al. 1998), and ADT (Wang

et al. 2000). These algorithms rank the generated CARs using a confidence measure.

According to these algorithms, the rule ranking process plays an important role in

the classification process since the accuracy is affected directly to the order of CARs.

However, the confidence measure has some limitations (Tan et al. 2005). It may

not be good enough due to a low discrimination power to the instances in the other

classes. The reason is that a confidence measure is defined using a frequency count

of the exact matched instances on a training data set. On a space of distribution,

it is possible that a high confidence rule can be close to many instances in different

classes. Thus, this rule can misclassify instances in different classes on a testing set.

www.manaraa.com

30

Regarding the problem in the traditional AC, Vateekul and Shyu (2008) proposed

a novel conflict-based confidence measure for ranking CARs in an AC framework,

which better captures the conflict between a rule and a training instance. It quantifies

the amount of conflict that a rule possesses with respect to all instances belonging to

different classes in the data set. Moreover, the framework also included a presented

interleaving ranking strategy that can improve performance of CARs on both balance

and imbalance data sets.

2.4 Related Work

This section shows research in domains of multi-label classification. We focus on

explaining only works based on the mentioned algorithms in Section 2.2, i.e., decision

tree, SVM, and AC.

Decision Tree: In this kind of domains, “multi-label C4.5” (ML-C4.5) (Clare

and King 2001) is the most well-known decision tree-based algorithm. The authors

modified the C4.5 algorithm for the functional prediction in genomic data. The

main difference between ML-C4.5 to the original version is how it calculates an en-

tropy as shown in Equation 2.19, where PS(ci) is the percentage of instances be-

longing to Class ci in the database, and |C| is the number of classes. The term

(1−PS(ci))log(1− PS(ci)) is considered in case of the probability belonging to other

classes, (1−PS(ci)). Gao et al. (2004) extended their binary maximal figure-of-merit

learning algorithm to multi-label problems. The method trains all classifiers simulta-

neously and optimizes performance metrics such as precision and recall. Nonetheless,

their discriminant function for classification is still based on individual categories.

www.manaraa.com

31

Entropy(S) = −
|C|∑

i=1

(PS(ci)logPS(ci) + (1− PS(ci))log(1− PS(ci))) (2.19)

SVM: Several of the recent works in multi-label classification employ SVM, based

on the problem transformation approach, by generating a separate SVM classifier for

each class. Joachims (1998) and Kwok (1998) showed that SVM is appropriate for

learning text classifiers with many desirable properties. SVM is good at handling

domains where the number of features exceeds the number of training examples. It

eliminates the need for feature selection, saving a complicated preprocessing step. It

is well suited for problems with few irrelevant features and sparse example vectors,

and it behaves robustly without the need for manual parameter tuning. Ease in

incorporating new examples, when available, into an existing trained system is also

a plus. In the experiments of Joachims (1998) and Kwok (1998), SVM substantially

and significantly outperformed other text classification methods. On the downside,

SVM induction is computationally more expensive than that of naive Bayes and k-

NN, but roughly comparable to the C4.5 decision tree algorithm. At classification

time, SVM is faster than k-NN, however (Colas and Brazdil 2006). An improvement

to the standard SVM proposed by Joachims (2006) is a Cutting-Plane Algorithm

called SVM-Perf. Compared to existing methods, SVM-Perf is simple and easy to

implement. It is faster than the standard one that uses decomposition methods, and

in his experiments there was no indication that SVM-Perf was less accurate.

AC: The most common method is MMAC (Multi-class Multi-label Associative

Classification) (Thabtah et al. 2004). It is divided into three modules: rules genera-

tion, recursive learning and classification. In the recursive learning process, MMAC

www.manaraa.com

32

generates rules that can predict multiple classes using merging strategy while other

AC algorithms, CBA and CPAR, produce rules that output only single class. For ex-

ample, assume there are two rules, R1 : (x1∧x2) −→ C1 and R2 : (x1∧x2) −→ C2,

MMAC will merges these rules to the new rule R : (x1 ∧ x2) −→ (C1 ∨ C2).

2.5 Performance Evaluation

2.5.1 Classical Classification Criteria

Before exploring the ways to evaluate multi-label classifiers, we first need to know

how to evaluate binary classifiers which label each example as either belonging or

not belonging to the given category. Here we rely on the following quantities: TP

(true positives), FN (false negatives), FP (false positives), and TN (true negatives).

Their values are used in the formulas for precision (Pr) and recall (Re):

Pr =
TP

TP + FP
Re =

TP

TP + FN
(2.20)

Which of the two really matters depends on the user’s needs and preferences.

Precision is the percentage of truly positive examples among those labeled as such

by the classifier; conversely, recall gives the percentage of truly positive examples

that have been recognized as such by the classifier. Observing that we often want to

maximize both criteria while balancing their values, (van Rijsbergen 1979) proposed

a way to combine precision and recall in a single formula, Fβ , parameterized by the

user-specified β ∈ [0,∞) that quantifies the relative importance of either metric:

www.manaraa.com

33

Fβ =
(β2 + 1)× Pr ×Re

β2 × Pr + Re
(2.21)

The reader can see that β > 1 apportions more weight to recall while β < 1

emphasizes precision. Moreover, Fβ converges to recall if β →∞, and to precision if

β = 0. The situation where precision and recall are equally relevant is reflected by

β = 1, which leads to the following formula:

F1 =
2× Pr ×Re

Pr + Re
(2.22)

2.5.2 Multi-label Classification Criteria

As for the needs of multi-label domains, (Yang 1999) proposed two alternative ways to

generalize the above criteria: (1) macro-averaging , where precision and recall are first

computed separately for each category and then averaged; and (2) micro-averaging ,

where precision and recall are obtained by summing over all individual decisions.

Which of the two averaging methods really matters depends on the concrete appli-

cation: whereas micro-F1 weighs the classes according to their relative frequency,

macro-F1 gives equal weight to each class. The formulas are summarized in Table 2.1

where Pri, Rei, and F1,i stand for precision, recall , and F1 for the i-th class (from N

classes).

2.6 Conclusion

This chapter summarizes concepts and existing works related to the domain of multi-

label classification, where the same example can belong to two or more classes at the

www.manaraa.com

34

Table 2.1: Macro-averaging and micro-averaging of the performance criteria on the
data set with k classes.

Average Criteria Equation

Macro
Precision PrM =

∑k
i=1

Pri

k

Recall ReM =
∑k

i=1
Rei

k

F1 F M
1 =

∑k
i=1

F1,i

k

Micro
Precision Prµ =

∑k
i=1

TPi∑k
i=1

(TPi+FPi)

Recall Reµ =
∑k

i=1
TPi∑k

i=1
(TPi+FNi)

F1 F µ
1 = 2×Prµ×Reµ

Prµ+Reµ

same time. The goal is to induce a classifier from training data to classify testing

data in this kind of scenarios such that specific performance criteria are optimized.

Existing multi-label classification methods can be grouped into two main approaches:

(i) problem transformation and (ii) problem adaptation. Both approaches have dif-

ferent pros and cons, so the choice of use depends on the user’s preferences. The

presented works in this dissertation follow the most common approach, the problem

transformation one by generating a separate classifier for each class. Details of the

common state-of-art baseline classifiers are provided including Decision Trees, Sup-

port Vector Machine (SVM), and Associative Classification (AC). Next a survey of

previous works based on these three methods in the domain of multi-label classifi-

cation are presented. To evaluate multi-label classifiers, there are two alternative

ways to combine each of single-label classification criteria (precision (Pr), recall (Re),

and F1): (i) macro-averaging and (ii) micro-averaging . The first averaging method

gives equal weight to all classes while the latter weighs the classes according to their

number of examples.

www.manaraa.com

CHAPTER 3

Hierarchical Classification

Hierarchical classification deals with problems where categories (classes) are orga-

nized in the form of a hierarchy. This research area has received less attention,

yet it has many important applications. Many text collections are organized as hi-

erarchies including (i) web repositories and digital libraries, e.g., Dmoz, Wikipedia5,

Yahoo (McCallum et al. 1998; Mladenie 1998), LookSmart (Dumais and Chen 2000),

EUROVOC (Sarinnapakorn and Kubat 2007), and Reuters (Lewis et al. 2004a),

(ii) bio-medical fields, e.g., OHSUMED (Hersh et al. 1994), MIPS’ FunCat (Mewes

et al. 1997), and Gene Ontology (Harris 2004), (iii) image recognition (Stenger et al.

2007), etc. These demonstrate that learning in the presence of class hierarchies is

becoming a necessity in many domains of applications.

This chapter aims to show the details of hierarchical classification. First, the

specific concepts of problems and tasks in this domain are provided. Then general

approaches and its related work are summarized. Finally, the performance of classi-

fiers in this domain will be explained.

5The data sets from Wikipedia (www.wikipedia.org) and the ODP web directory (www.dmoz.org)
are available at the 2nd Pascal Challenge on Large Scale Hierarchical Text Classification (LSHTC2).

35

www.manaraa.com

36

3.1 Specifics of Hierarchical Classification

This section defines some notations specific for a hierarchical classification. In par-

ticular, we first give definitions and types of hierarchies, then details of the class

relationships are provided, next a problem statement of hierarchical classification is

explained, and finally, we will discuss the types of hierarchies in a real-world applica-

tion: taxonomy and ontology.

3.1.1 Definition

The following notations and symbols will be used throughout the dissertation.

Hierarchy (H): A hierarchy H = (N , E) is defined as directed acyclic graph

(DAG) consisting of a set of nodes, N , and a set of edges, E , where an edge is an

ordered pair of nodes, (Np, Nc) ∈ E ⊆ {N × N}. The direction of an edge (Np, Nc)

is defined from the parent node Np to the direct child node Nc, specified through the

relationship operator Np ⇒ Nc which also called the direct path from Np to Nc. A

path Na → Nc indicates that there exists a path from the ancestor node Na to the

child node Nc. Note that in a hierarchy H with a path Na → Nc there exists no path

Nc → Na since the hierarchy is acyclic.

Additionally there exists exactly one node called root node Nr of a graph H that

has no parent. Nodes without any child nodes are called leaf nodes. All nodes except

the root node and leaf nodes are called inner nodes. In Figure 3.1(a), the root node

is {0}, inner nodes are {1, 2}, and leaf nodes are {3, 4, 5, 6}.

The structure of hierarchies can be classified into two main categories: tree and

Direct Acyclic Graph (DAG) structures. The main difference between the tree struc-

www.manaraa.com

37

ture (Figure 3.1(a)) and the DAG structure (Figure 3.1(b)) is that each node in the

tree hierarchy has just one parent node, while each node in the DAG hierarchy can

inherit from many parents.

0

1

3 4

2

5 6

The root node = {0}

Inner nodes = {1,2}

Leaf nodes = {3,4,5,6}

(a) A tree-structured hierarchy

0

1

3 4

2

5 6

(b) A DAG-structured hierarchy

Figure 3.1: Examples of hierarchies.

Classes (C): Let C be a finite set of class labels, and each class Ci consists of

a set of examples X . The relationship among classes is defined in the class hierar-

chy H where each node Ni within the hierarchy is assigned to exactly one class Ci

(C ≡ N ∈ H).

Examples (X): Let Rp be an example space where each example is described

by a vector of p attributes. Let X ⊂ Rp be a finite set of examples. In the hierarchy

H, a set of examples is assigned to one or more class labels, L = {C1, ..., Cl}.

3.1.2 Class Relationship

H is a hierarchical structure defining relationships among all classes C. The assump-

tion behind these constraints is, that Cparent → Cchild commonly defines as a IS-A

relationship in the tree structure and a Part-of relationship in the DAG structure

among classes whereby Cparent has a boarder topic than Cchild and the topic of a par-

www.manaraa.com

38

ent class Cparent covers all. Additionally, the topics from siblings may be overlapped,

the multi-label case. The relationships must follow the properties below:

• Asymmetric: ∀(Ci, Cj) ∈ C, if Ci → Cj then Cj 9 Ci. For example, all dogs

are mammals, but not all mammals are dog.

• Anti-reflexive: ∀(Ci) ∈ C, Ci 9 Ci. For example, the parent class of a dog

cannot be itself, unnecessary.

• Transitive: ∀(Ci, Cj, Ck) ∈ C, if (Ci → Cj) ∧ (Cj → Ck) then (Ci → Ck). For

instance, all dogs are mammals and all mammals are animals; therefore all dogs

are animals.

3.1.3 Problem Statement

The problem in this area is defined as follows:

Hierarchical Classification: Given a set of training data, S = {(x1, C1), ..., (xn, Cn)},

the goal is to induce a classifier to carry out the mapping Φ : X → 2C in a way that

maximizes classification performance. The constraint defined by the hierarchy H

must be satisfied as shown in the definitions below.

• Definition “Hierarchical Consistency (Constraint):” An example xi that

belongs to a class Ci is automatically assigned to all of its ancestor classes

Cancestor as shown in the equation below. Note that every example belongs to

the top class of the hierarchy; therefore, we always exclude the top node from

any ancestor set since including it does not provide any additional information

on the example.

www.manaraa.com

39

{xi ∈ Ci} ⇒ {∀(Cancestor)|Cancestor → Ci ∧ xi ∈ Cancestor}

{Cancestor, Ci} ∈ H, C (3.1)

• Definition “Hierarchical Consistency Requirement:”. Any class assign-

ments produced by a hierarchical classification system on a given hierarchical

tasks has to be consistent with a corresponding class hierarchy.

Figure 3.2 presents examples of consistent and inconsistent class assignments.

Figure 3.2(a) gives a case of the consistent assignment since the example xi which

belongs to Classes C4 and C5 is labeled along with all their ancestors, Classes C1

and C2. While Figure 3.2(b) shows an inconsistent assignment case: the example

xi belongs to Class C5, but it is not assigned to Class C2 which is the C5’s parent

class. Such situations can occur if we apply conventional classification method to a

hierarchical task without any modifications.

0

1

3 4

2

5 6

(a) Consistent assignment

0

1

3 4

2

5 6

(b) Inconsistent assigment

Figure 3.2: Examples of consistent and inconsistent class assignments. The circles in
bold represent the categories assigned to an example xi by a classifier.

In some hierarchical classification problems, all examples are associated with

classes at the leaf nodes. This kind of problems is called mandatory leaf-node

www.manaraa.com

40

problems (MLNP). When this obligation does not hold, the problem is called op-

tional leaf-node problems (NMLNP). For instance, referring to Figure 3.2(a),

an example can belong to any nodes in NMLNP, whereas it must belong to only leaf

nodes, {3, 4, 5, 6}, in MLNP.

3.1.4 Taxonomy and Ontology

Taxonomy is a particular classification arranged in a hierarchical structure. Typi-

cally this is organized by supertype-subtype relationships, also called generalization-

specialization relationships. Thus, it must be a tree hierarchical structure (cannot be

DAG). There is also the thesaurus. Thesaurus and Taxonomy are similar in that both

are tree hierarchical structures; however, the thesaurus covers more types of relation-

ships than taxonomy which has only the superclass-subclass relationships. Moreover,

both taxonomy and thesaurus are commonly used in domains of text categorization.

Sometimes taxonomy is also used in domains of biology, such as Functional Cate-

gory (FunCat) and MIPS provided by The Munich Information Center for Protein

Sequences6 (Mewes et al. 2002).

Ontology is a formal representation of the knowledge by a set of concepts within a

domain and the relationships between those concepts. Comparing to taxonomy, on-

tology is not organized only as a tree structure, but also a DAG structure. Moreover,

ontology often uses more complex relationships. The concept of ontology is especially

widespread in domains of biology, such as Gene Ontology (GO)7 (Harris 2004).

6http://mips.gsf/proj/yeast/catalogues/funcat
7http://www.geneontology.org

www.manaraa.com

41

3.2 General Approach

Silla and Freitas (2010) summarized three common approaches in domains of hierar-

chical classification including (i) flat classification approach, (ii) local classification

(or top-down) approach, and (iii) global (or big-bang) approach. Note that the no-

tations and figures in this section are based on the survey of Silla and Freitas (2010).

3.2.1 Flat Classification Approach

The simplest approach is to transform the hierarchical problem to a flat classification

problem. It ignores the class hierarchy altogether, and deals only with the leaf-node

classes (as if the problem were MLNP), whether by a single multi-label classifier or by

a set of binary classifiers (a separate one for each leaf node). Traditional approaches,

such as neural networks, decision tree, and SVM, may be applied in this context

without any modifications. Figure 3.3 gives a scenario of this approach that only the

classes in dash boxes, {1.1, 1.2, 2.1.1, 2.1.2, 2.2.1, 2.2.2}, are conducted classifiers.

The advantage of this approach is its simplicity and the ability to cope with both

tree and DAG hierarchical structures. However, it can lead to many serious problems.

First, the results of this approach may conflict with the hierarchical consistency in

Section 3.1.3 since the parent-child relationships are not taken into account. Second,

it cannot support NMLNP. Due to these deficiencies, this approach is not considered

in the dissertation.

www.manaraa.com

42

0

1

1.1 1.2

2

2.1 2.2

2.1.1 2.1.2 2.2.1 2.2.2

Figure 3.3: Flat classification approach in hierarchical classification. Circles represent
classes and each dashed rectangle encloses the classes predicted by a classifier.

3.2.2 Local Classification (or Top-Down) Approach

This is the most common approach in the domain of hierarchical classification. One

or more classifiers are trained for each (i) class node or (ii) class level of the hierarchy.

This produces a tree of classifiers in the tree structure or a graph of classifiers in the

DAG structure. Those classifiers are constructed from “local information”. This is

also called “top-down approach” (Koller and Sahami 1997) because the training and

testing processes proceed in a top-down fashion.

This approach has the advantage in terms of its simplicity, efficiency, and ability to

handle the most difficult types of problems that have the characteristics of multi-label,

DAG, and NMLNP. Furthermore, the baseline classifier for each class can be adopted

from the efficient methods of the simpler domain, multi-label classification. However,

there are two main disadvantages. First, inducing a binary classifier on the domain

with an excessive number of classes can lead to the circumstance that the negative

examples outnumber the positive ones, “highly imbalance of the training data”. The

www.manaraa.com

43

second issue is “propagated errors” where misclassified examples at the upper level

are propagated down the hierarchy; therefore, this directly affects performance of

classifiers at the bottom level, and also the overall system.

In the following, we will explain more details of training data preparation, training,

and testing processes. Then related research in this approach will be discussed.

Training Data Preparation Process

Different ways of defining positive and negative training examples for a binary clas-

sification method usually give varied classification results. Eisner et al. (2005) and

Fagni and Sebastiani (2007) proposed comparative studies among different methods

of assigning a training data set. Silla and Freitas (2010) categorized the methods in

those studies to five different approaches. Let us explain each of them by giving an

example of how to create a set of training data for Class C2.1 based on the hierarchy

in Figure 3.4. The notations in the explanation are defined by Table 3.1.

0

1

1.1 1.2

2

2.1 2.2

2.1.1 2.1.2 2.2.1 2.2.2

Figure 3.4: A hierarchy for the explanation of the training data preparation process.

www.manaraa.com

44

Table 3.1: Notations for negative and positive training examples (Silla and Freitas
2010).

Symbol Meaning
Tr The set of all training examples
Tr+(Ci) The set of positive training examples of Ci

Tr−(Ci) The set of negative training examples of Ci

↑ (Ci) The parent classes of Ci

↓ (Ci) The children classes of Ci

⇑ (Ci) The set of all ancestor classes of Ci

⇓ (Ci) The set of all descendant classes of Ci

↔ (Ci) The set of sibling classes of Ci

∗(Ci) Denotes examples whose “most specific assigned class” is Ci

\ Denotes as difference, e.g., Tr\ ∗ (Ci) represents all examples except Ci

• The “exclusive” policy: Tr+(Ci) = ∗(Ci) and Tr−(Ci) = Tr\ ∗ (Ci). The pos-

itive examples are only examples explicitly labeled as Ci, while the remaining

examples in the database are negative examples. For instance, Tr+(C2.1) con-

sists of examples whose most specific class is {2.1}; and Tr−(C2.1) composes of

examples of the remaining classes, {1, 1.1, 1.2, 2, 2.1.1, 2.1.2, 2.2, 2.2.1, 2.2.2}.

• The “less exclusive” policy: Tr+(Ci) = ∗(Ci) and Tr−(Ci) = Tr\{∗(Ci) ∪

⇓ (Ci)}. The positive examples of this policy are similar to those of the exclusive

policy, {2.1}, whereas the negative examples do not include examples belonging

to the positive class and its descendants. Thus, Tr−(C2.1) is examples in the

classes {1, 1.1, 1.2, 2, 2.2, 2.2.1, 2.2.2}.

• The “less inclusive” policy: Tr+(Ci) = {∗(Ci)∪ ⇓ (Ci)} and Tr−(Ci) = Tr\{∗(Ci)

∪⇓ (Ci)}. The set of positive examples also includes examples of its descendant

classes, while the rest examples in the database are labeled as negative. For

www.manaraa.com

45

instance, Tr+(C2.1) consists of examples in the classes {2.1, 2.1.1, 2.1.2} and

Tr−(C2.1) comprises of examples in the classes {1, 1.1, 1.2, 2, 2.2, 2.2.1, 2.2.2}.

• The “inclusive” policy: Tr+(Ci) = {∗(Ci)∪⇓ (Ci)} and Tr−(Ci) = Tr\{∗(Ci)∪

⇓ (Ci) ∪ ⇑ (Ci)}. The positive examples of this policy are similar to those of

the previous policy, but the negative examples exclude any positive examples

along with Ci’s ancestors and descendants. For instance, Tr+(C2.1) consists of

examples in the classes {2.1, 2.1.1, 2.1.2} and Tr−(C2.1) comprises of examples

in the classes {1, 1.1, 1.2, 2.2, 2.2.1, 2.2.2}, not including C2’s examples.

• The “siblings” policy: Tr+(Ci) = {∗(Ci) ∪ ⇓ (Ci)} and Tr−(Ci) = ↔ (Ci) ∪

⇓ (↔ (Ci)). The difference to the previous policy is the set of negative examples

that uses examples in Ci’s sibling classes and their descendants. For instance,

Tr+(C2.1) consists of examples in the classes {2.1, 2.1.1, 2.1.2} and Tr−(C2.1)

comprises of examples in the classes {2.2, 2.2.1, 2.2.2}.

• The “exclusive siblings” policy: Tr+(Ci) = ∗(Ci) and Tr−(Ci) = ↔ (Ci). The

positive examples are only examples explicitly labeled as Ci, while the examples

in the Ci’s sibling classes are negative examples. For instance, Tr+(C2.1) consists

of C2.1’s examples, and Tr−(C2.1) comprises of C2.2’s examples.

Concerning which approach should be used, Eisner et al. (2005) concluded that

the higher the percentage of positive training data (more inclusive) is, the better

the classifier performs. However, the inclusive policy makes the size of training data

smaller and can cause in worse results if the training set is too small. Their results

based on F1 of classifiers along different policies showed 0.456 in the exclusive policy,

www.manaraa.com

46

0.528 in the less exclusive policy, 0.696 in the less inclusive policy, and 0.697 in the

inclusive policy.

Training Process

There are three standard ways of training classifiers in the local classification approach

as follows:

Local classifier per node approach (LCN): This is the most common approach

in the literature, including the method proposed in this dissertation. For each class

node in the hierarchy (except the root node), a “binary” classifier is induced to predict

examples whether or not they belong to the class. In Figure 3.5, ten classifiers are

induced equal to the number of classes in the hierarchy.

Local classifier per parent node approach (LCPN): This approach generates “multi-

class (multi-label)” classifiers equal to the number of parent nodes in the hierarchy.

The number of outputs for each multi-class classifier is equal to the number of its

child nodes. Figure 3.6 illustrates this approach. Note that a classifier at the root

node is must be constructed.

Local classifier per level approach (LCL): This approach is commonly used in

a tree-structured class hierarchy. For each class level, a “multi-class (multi-label)”

classifier is induced like in LCPN. Figure 3.7 shows an example of this approach.

There are three classifiers induced in the figure. Note that LCL also works with a

DAG-structured class hierarchy although the concept of class levels cannot be applied

to the DAG structure. If a class node belongs to several class levels, it can be

duplicated to be used many times at different class levels.

www.manaraa.com

47

0

1

1.1 1.2

2

2.1 2.2

2.1.1 2.1.2 2.2.1 2.2.2

Figure 3.5: Local classifier per node. Circles represent classes and each dashed square
encloses the classes predicted by a binary classifier.

0

1

1.1 1.2

2

2.1 2.2

2.1.1 2.1.2 2.2.1 2.2.2

Figure 3.6: Local classifier per parent node. Circles represent classes and each dashed
square encloses the classes predicted by a multi-class (multi-label) classifier.

www.manaraa.com

48

0

1

1.1 1.2

2

2.1 2.2

2.1.1 2.1.2 2.2.1 2.2.2

Figure 3.7: Local classifier per level. Circles represent classes and each dashed rect-
angle encloses the classes predicted by a multi-class (multi-label) classifier.

Testing Process

Beginning at the root node, an example is classified in a top-down manner. When

assigned to one class, the example is then submitted to a new classifier in order to

predict to which of this class’ subclasses it belongs. This procedure is repeated until

a leaf-node class is reached or until no additional prediction can be made.

Let us give an example based on the system in Figure 3.5 that each class has its own

classifier. Assume that an unknown example is predicted as C2 but not C2.2. Thus,

this example does not need to continue classifying at the subclassifiers,{2.2.1, 2.2.2}.

Taking multi-label classification into consideration, an unknown example is si-

multaneously predicted by many classifiers. For instance, assume that an example

is assigned to both C1.1 and C2.2.1; therefore, the classifiers along both C1 and C2

subtrees must be employed to predict this example.

In the DAG hierarchy, the post-process called “a hierarchical criteria correction”

must be provided to make the classification results be consistent. Figure 3.8 illustrates

www.manaraa.com

49

the scenario that the correction is necessary because the prediction of Classifier C2.1

conflicts to that of its parent classifier, C1; thus, the result of Classifier C2.1 must be

corrected to be negative.

0

1

1.1 1.2

2

2.1 2.2

2.1.1 2.1.2 2.2.1 2.2.2

Negative Positive

Positive

Figure 3.8: The scenario in which the hierarchical criteria correction must be applied.
Circles represent classes and each dashed rectangle encloses the classes predicted by
a binary classifier.

3.2.3 Global Classification (or Big-Bang) Approach

This approach constructs one big (global) classification model for all classes of the

hierarchy in a “single” run of the algorithm as shown in Figure 3.9. It has many

advantages: (i) the total size of the global classification model is usually smaller than

the total size of all local classification models combined, and (ii) the dependencies

among classes in the hierarchy are taken into account. However, there are also some

disadvantages: (i) it requires a higher algorithmic complexity than other approaches,

and (ii) only a single classifier may not be able to identify unseen data throughout a

large number of classes.

www.manaraa.com

50

0

1

1.1 1.2

2

2.1 2.2

2.1.1 2.1.2 2.2.1 2.2.2

Figure 3.9: Global classification approach. A dashed rectangle represents that this
approach uses only a single special classification for the whole class hierarchy.

3.3 Related Work

In this section, we will discuss research work related to the general approaches of

hierarchical classification mentioned in Section 3.2.

3.3.1 Related Work on Flat Classification Approach

An ensemble method of a simple Neural Networks called “Protein Feature-Based

Prediction” was proposed by Jensen et al. (2002) to predict a class hierarchy of

protein functions for the bacteria Escherichia coli (Riley 1993). Optimal combination

of parameters for each simple network of the different categories were found using a

boot-strap strategy. The experimental result on the category “transport and binding”

achieved 90% in terms of sensitivity with 10% of false positive rate.

Then a more complex method using Multilayer Perceptron Neural Networks was

invented by Weinert and Lopes (2004) to classify functions and characteristics of

enzymes from the Protein Data Bank (PDB) (Berman et al. 2000).

www.manaraa.com

51

Although those studied showed promising classification performance, they treated

each class in the hierarchy independently. Hence, the predictions of one class can

conflict with those of other classes regarding the hierarchical constraint.

3.3.2 Related Work on Local (or Top-Down) Classification

Approach

Sun and Lim (2001) developed a top-down level-based classification method using

binary classifiers, SVM, and experimented on the Reuters collection. The algorithm

aimed to support NMLNP and the tree-structured class hierarchy (not the DAG-

structured one). For each class node, there are two classifiers: (i) local-classifier and

(ii) subtree-classifier. The local-classifier is built to determine whether an example

should be assigned to Ci or not. The training data of the first classifier is generated

by the siblings policy. The subtree-classifier is built to decide whether an example

should be assigned to any Ci’s subclasses or not in order to support NMLNP. The

training data of the second classifier is constructed by the inclusive policy.

The method showed considerably good experimental results along F1 criteria.

However, it is impaired by a concern of the time-consumption for the induction of

two classifiers for each class node. Moreover, the subtree classifier does not seem to be

necessary. For instance, without using the subtree classifier, if the local classifier pre-

dicts an example not belonging to Ci, the system does not need to continue classifying

this example to Ci’s subclass classifiers to preserve the hierarchical constraint.

Then it was improved by Nguyen et al. (2005) to support a DAG-structured hier-

archy by two proposed solutions. First, the “tree-based solution” transforms a DAG

hierarchy to a tree hierarchy as shown an example in Figure 3.10. Second, the “DAG-

www.manaraa.com

52

based solution” modifies the Sun and Lim (2001)’s method by generating the number

of subtree classifiers equal to the number of parent nodes. Experiments were con-

ducted on the Reuters-215878 and AI paper data sets. The results showed that both

solutions performed better than the flat SVM classification approach. However, the

Nguyen et al. (2005)’s method has the same concern of the computational complexity

as the Sun and Lim (2001)’s method.

A

B

E F

D

H I

C

G

A

B

E F1

D

H2 I

C

G

H1

F2

H I

Figure 3.10: DAG-to-Tree transformation (Nguyen et al. 2005).

Secker et al. (2007) proposed a hierarchical classification framework based on the

LCPN approach. The authors hypothesize that it would be possible to improve the

predictive accuracy by applying heterogeneous classification algorithms at different

parent nodes of the class hierarchy. There were 10 chosen classifiers: Naive Bayes,

Bayesian Network, SMO, 3-NN, and etc. To determine the best classifier for each

node, the training set is divided into sub-training and validation sets with examples

being assigned randomly to each of those data sets. Different classifiers are trained

using the sub-training set and then evaluated on the validation set. The classifier

chosen for each parent class node is the one with the highest classification accuracy on

www.manaraa.com

53

the validation set. The predictive accuracy at each level of hierarchy was reported and

indicated that the selective approach among heterogeneous classifiers outperformed

all of those individual methods. However, its induction time must be extremely high.

3.3.3 Related Work on Global (or Big-Bang) Classification

Approach

Clare and King (2003) proposed a big-bang approach algorithm modified from

C4.5 (Quinlan 1986) as shown in Section 2.3.1 to classify functional genomics data.

They first introduced a multi-label version of C4.5 (ML-C4.5) as referred in Section 2.4

and then extended it in the hierarchical context. They also preferred more specific

classes of the predefined hierarchy and used the weighting concept in the entropy

formula to account for this concept.

Blockeel et al. (2006) presented a decision tree based hierarchical classification

algorithm called “Clus-HMC” (“Clus” standing for “Clustering tree” and “HMC”

standing for “Hierarchical Multi-label Classification”). It is a hierarchical extended

version of their own decision tree called “Predictive Clustering Tree (PCT)” (Blockeel

et al. 1998). The difference between PCT and other decision trees, such as ID3 and

C4.5, is that the PCT’s classification model is constructed using a variance measure

instead of the entropy score. Clus-HMC is considered as the global approach since it

exploits the given class hierarchy and predicts all classes with a single decision tree.

To compute the variance measure in the hierarchical context, the example labels

are represented as a vector of Boolean components. In Figure 3.11(a), an example

belonging to the classes {1, 2, 2.2} is represented by a vector [1, 1, 0, 1, 0]. Then the

variance of the label vector is computed by the average squared distance between

www.manaraa.com

54

vectors of each examples label vi and the mean label v. From these modification,

Clus-HMC can generate a decision tree following the same procedure as PCT.

Figure 3.11(b) shows an example of the induced Clus-HMC’s tree for the hierarchy

in Figure 3.11(a). Each leaf node is represented by the mean v of the vectors of its

examples. A predefined threshold t is used to interpret predicted classes for each

node. If vi is above the threshold ti, an example is predicted to belong to class ci. For

instance, if t = 0.4 equal to all classes, the left most node of the Clus-HMC tree in

Figure 3.11(b) will label examples as C2 and C2.2. The experiments showed that the

Clus-HMC tree yield better efficiency and interpretability without suffering a decline

in predictive accuracy. However, how the threshold should be chosen was not stated.

R

1 3

2.1 2.2

2(1) (2) (5)

(3) (4)

(1) (2) (3) (4) (5)

vi = [1, 1, 0, 1, 0]

(a) A predefined class hierarchy

A1 ≤ 0.2

A2 ≤ 0.21 0.0

2 0.9

2.1 0.1

2.2 0.8

3 0.1

yes no

1 0.1

2 0.0

2.1 0.0

2.2 0.0

3 0.0

1 0.1

2 0.0

2.1 0.0

2.2 0.0

3 0.9

yes no

(b) An induced Clus-HMC’s tree

Figure 3.11: (a) An example of a class hierarchy with a vector vi representing an
example belonging to the classes {1, 2, 2.2}, indicating in a bold path. (b) Each
leaf of the Clus-HMC’s classifier (tree) shows the probability for each class in the
hierarchy.

Vens et al. (2008) extended Clus-HMC towards hierarchies structured as DAGs.

They showed that inducing one decision tree for simultaneously predicting all func-

tions (the global approach) outperforms learning one tree per function (the local

www.manaraa.com

55

approach). Recently Schietgat et al. (2010) introduced the ensemble version of

Clus-HMC called “Clus-HMC-ENS”. It constructs multiple trees using a simple

bagging (bootstrapping), and then combines the predictions of each classifier. The

hierarchical classification system proposed by this dissertation will be compared to

Clus-HMC. Although Clus-HMC-ENS outperformed Clus-HMC in terms of “the area

under precision and recall measure (AUPRC)”, it was impaired by a large induction

time spent on bootstrapping. The suggested number of bootstraps is 50 iterations;

this means that the induction time of Clus-HMC-ENS is 50 times that of Clus-HMC.

3.4 Performance Evaluation

In domains with hierarchically organized classes, the classical measures, such as pre-

cision, recall, and F1, in Section 2.5 appear to be inadequate to fully address the

hierarchical nature. Thus, measures that incorporate the problem’s hierarchy must

be considered. There are several alternatives of hierarchical classification measures,

some of which are distance- and semantics-based measures suggested in Sun and Lim

(2001) and Costa et al. (2007). However, we omit these measures because acceptable

differences and similarities are often specified by users, and, therefore, the results may

be subjective and user-specific.

We prefer the use of the metrics proposed by Kiritchenko et al. (2005) as extended

versions of, again, precision, recall, and F1. In the hierarchical context, each exam-

ple belongs not only to a class(es), but also to all ancestors in the class hierarchy,

excluding the root node. The metrics for the i-th example are summarized in Ta-

ble 3.2, where Pi and Ti represent sets of predicted and true classes respectively, and

www.manaraa.com

56

P̂i and T̂i stand for Pi and Ti plus their ancestors. Hierarchical precision (hPri) is

an accuracy of the prediction path, hierarchical recall (hRei) is an accuracy of the

true path, and hierarchical F1 (hF1,i) is an equally combined measures of hPri and

hRei. For illustration, referring to the hierarchy from Figure 3.12, let Pi = {C2.2}

and Ti = {C2.2.1}. This yields P̂i = {C2, C2.2} and T̂i = {C2, C2.2, C2.2.1}, so that

hPri = 2
2

= 1, hRei = 2
3
, and hF1,i = 0.8.

Table 3.2: The hierarchical version of precision, recall, and F1 for an example i.
Precision Recall F1

hPri = |P̂i∩T̂i|

|P̂i|
hRei = |P̂i∩T̂i|

|T̂i|
hF1,i = 2×hP×hR

hP+hR

0

1

1.1 1.2

2

2.1

2.2

2.2.1 2.2.2

Figure 3.12: An example of a DAG-structured hierarchy.

Let us now compute the hierarchical performance of the data set with n examples

labeled by l classes. The authors then chose to combine the performance of all

examples by micro-averaging, which is shown in Table 3.3. However, this combining

method tends to be biased towards examples with longer paths.

www.manaraa.com

57

Table 3.3: The micro-averaging version of hierarchical precision, hierarchical recall,
and hierarchical F1 of n examples.

Precision Recall F1

hPrµ =
∑n

i=1
|P̂i∩T̂i|∑n

i=1
|P̂i|

hReµ =
∑n

i=1
|P̂i∩T̂i|∑n

i=1
|T̂i|

hF1
µ = 2×hP×hR

hP+hR

To see why, consider the following data set where the true labels are as follows:

S = {(x1, C2.2), (x2, C1), (x3, C2)}. Let the classes be organized according to the

hierarchy from Figure 3.12. Suppose there are two classifiers, Φ1 and Φ2. Their

prediction results on the data set S are shown in the following list. Note that the

underline represents a correctly predicted class by a classifier.

• Φ1(S) = {(x1, C2.2), (x2, C2), (x3, C1)} (correctly classifying x1).

• Φ2(S) = {(x1, C1.1), (x2, C1), (x3, C2)} (correctly predicting x2 and x3).

The hierarchical evaluation for each example (hPr, hRe, and hF1) of those above

classifiers on the data set S is shown in Table 3.4. In this scenario, it is obvious

that Φ2 is better than Φ1, but the micro-averaging (the performance of all examples)

indicate that both classifiers perform the same, hPrµ = hReµ = hF1
µ = 1

2
.

Table 3.4: Hierarchical performances for each example (Table 3.2) of classifiers Φ1

and Φ2 on the data set S.
Classifier Example Precision (hPr) Recall (hRe) hF1

Φ1(S)
x1

2
2

= 1 2
2

= 1 1
x2

0
1

= 0 0
1

= 0 0
x3

0
1

= 0 0
1

= 0 0

Φ2(S)
x1

0
2

= 0 0
2

= 0 0
x2

1
1

= 1 1
1

= 1 1
x3

1
1

= 1 1
1

= 1 1

www.manaraa.com

58

To reasonably evaluate the classifiers in the previous scenario, we proposed to

apply macro-averaging to merge hierarchical measures of all examples as shown in

Table 3.5. This averaging method then evaluates the performance of Φ2 higher than

that of Φ1 as follows:

• Φ1(S) : hPrM = hReM = hF1
M = 1

3
.

• Φ2(S) : hPrM = hReM = hF1
M = 2

3
.

Table 3.5: The macro-averaging version of hierarchical precision, hierarchical recall,
and hierarchical F1 of n examples.

Precision Recall F1

hPrM =
∑n

i=1
hPri

n
hReM =

∑n
i=1

hRei

n
hFM

1 =
∑n

i=1
hF 1,i

n

3.5 Conclusion

This chapter addresses the more advanced version of the classification problem where

the classes are interrelated so that some classes are generalizations of others. We call

this the hierarchical classification task. The goal is not only to induce a classifier seek-

ing for the optimized performance, but also the classification result must pursue “the

hierarchical constraint”: an example does not just belong to some classes, but also

their superclasses. In this domain, the class hierarchy can be either tree or directed

acyclic graph (DAG). Moreover, when examples must be assigned to classes at the

leaf nodes, this kind of problem is called “a mandatory leaf node problem (MLNP)”.

When this obligation does not hold, the problem is called “a non-mandatory leaf node

www.manaraa.com

59

problem (NMLNP)”. The target problem of this dissertation has the characteristics

of multi-label, DAG, and NMLNP.

Existing hierarchical classification methods can be grouped into three main ap-

proaches: (i) flat classification approach, (ii) local classification (or top-down) ap-

proach, and (iii) global (or big-bang) approach. All of their concepts and related

works are presented. The proposed works in this dissertation follow the most com-

mon approach, the top-down one which generates a separate classifier for each class,

and then proceeds its training and testing from the classifiers at upper levels down

to bottom levels.

To evaluate hierarchical classifiers, the suggested metrics are an extended version

of the classical measures. For the example xi, the metrics are hierarchical precision

(hPri), hierarchical recall (hRei), and hierarchical F1 (hF1,i). Then there are two

alternative ways to combine those criteria on all examples : (i) macro-averaging and

(ii) micro-averaging . The first averaging method gives equal weight to all examples

while the latter weighs the examples according to their path length.

www.manaraa.com

CHAPTER 4

Learning from Large Scale, Imbalanced,
and Multi-Label Domains

This chapter shows the research in domains of multi-label classification. In domains

of this kind, two general paradigms have been explored: (i) induction of one large

multi-label classifier and (ii) induction of sets of binary classifiers, each classifier

for a different class label. In our research, we opted for the latter approach, the

most commonly used one. It was illustrated by (Rifkin and Klautau 2004) that it

is as accurate as any other learning strategy if the baseline classifiers are well-tuned

regularized classifiers such as Support Vector Machine (SVM).

The first work (Vateekul and Kubat 2009) was developed to handle the prohibitive

computational cost of decision-tree induction in text-categorization domains which

are usually described by ten thousands of features. Specifically, we developed a sys-

tem called “fast decision-tree induction (FDT)”. Our experiments showed that FDT

performed better than other traditional classifiers, such as C4.5 and SVM.

Later we found that the performance of SVM, which suffers from the induction on

the imbalanced training set, can be significantly improved by applying the threshold

adjustment strategy. We were motivated to study this approach and developed a

60

www.manaraa.com

61

new thresholding method called “R-SVM” in the second work (Vateekul et al. 2011).

Moreover, the experiments included more domains of multi-label data, i.e., text, bi-

ology, music, image, and video.

The chapter is organized as follows. Section 4.1 explains details of multi-label

data in our research. The concepts and experimental results of FDT and R-SVM are

shown in Section 4.2 and Section 4.3 consecutively. All our works are summarized in

Section 4.4.

4.1 Multi-Label Data Sets

This chapter reports six multi-label data sets from real-world applications used in the

experiments. Two text-categorization data sets (EUROVOC and RCV1-v2) are from our

own earlier research (Sarinnapakorn and Kubat 2007). The remaining four data sets

(Yeast, Emotions, Scene, and MediaMill) are available at the website multi-label

data sets8.

The characteristics of the data sets are summarized in Table 4.1. Considering

the percentage of the positive class, the class distribution of each data set can be

categorized into 3 categories: minority, equal, and majority. For instance, almost all

classes of EUROVOC have the positive class as a minority. It has the percentage of the

positive class between 0% and 55.22% with only 15.01% average. Conversely some

classes of Yeast and MediaMill have the positive class as a majority, more than 70%

of total data. More details of all data are shown as follows:

8http://mulan.sourceforge.net/datasets.html

www.manaraa.com

62

Table 4.1: The characteristics of data sets in multi-label domains.

Dataset Domain Features Classes Instances
% Positive Examples

Per Class
Average Min Max

EUROVOC text 4,000 30 10,000 15.01 0 55.22
RCV1-v2 text 4,000 101 6,000 2.87 0.02 44.55
Yeast biology 103 14 2417 30.28 1.43 75.13
Emotions music 72 6 593 31.15 24.97 44.55
Scene image 294 6 2407 17.89 15.07 22.11
Mediamill video 120 101 43,907 4.33 0.11 77.11

EUROVOC9 is a multilingual, polythematic thesaurus created by virtue of close coop-

eration of the European Parliament, the European Commissions Publications Office,

and the national organizations of the European Union (EU) member states. The doc-

uments in this collection come from such diverse fields as of interest to the activities

of the European institutions such as politics, law, economics, trade, and etc.

We were given an access to a part of EUROVOC classification system consisting of

78,599 documents, each described by 105,355 numeric features (each specifying the

relative frequency of a different word), and known to belong into a subset of more

than 5,000 different fields (class labels) in hierarchical form. For this work, we used

only the top-level labels composing of 30 classes. Among 78,599 documents, 10,875

documents are not assigned to any classes. Excluding unlabeled documents leaves us

with 67,724 documents in 5,452 fields. The file size of unprocessed data where all

data with value 0 are omitted is about 3 gigabytes (GB). After filling necessary data

values, the total size of data files becomes more than 16GB. We therefore worked

9The websites http://europa.eu/eurovoc/ and http://langtech.jrc.it/Eurovoc.html

are sources of our version. It is somewhat different from the one available on
http://mulan.sourceforge.net/datasets.html.

www.manaraa.com

63

with a simplified database (Sarinnapakorn and Kubat 2007) containing only 10,000

documents described by 4,000 features and labeled with 30 different classes.

RCV1-v2 is a benchmark collection of news articles made available by Reuters Ltd.

The original version is called Reuters Corpus Volume 1 (RCV1). Then, (Lewis et al.

2004a) processed it and called their version as RCV1-v2 with 804,414 documents and

47,236 features. There are several schemes to process the documents, including (i)

removing stopping words (unimportant words), such as a, an, the, etc., (ii) stemming:

change words to their root form (stem), such as identifying “cats” as its root “cat”,

and (iii) transforming the documents to vectors with TF-IDF format, and etc. Each

instance is cosine normalized. There are three category sets: Topics, Industries, and

Regions. In our research, we consider the Topics category set. There are 23,149

training and 781,265 testing instances. For labels, 101 appear in the training set

and 103 appear in the testing set. For the sake of the study, we chose the subset

data10 which contains 6,000 documents on 5 different subsets. However, our database

version (Sarinnapakorn and Kubat 2007) is even more simplified by using only 4,000

features randomly selected from those that have non-zero values in at least more than

5 documents.

Yeast is a data set formed by micro-array expression data and phylogenetic pro-

files from Munich Information Center for Protien Sequences (MIPS). The version on

the multi-label website (Elisseeff and Weston 2001) has 2,417 genes described by 103

features. Each gene is associated with a set of hierarchical functional classes with po-

tentially more than 190 functions. However, this data set considers only 14 functional

classes on the top level.

10http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/multilabel.html

www.manaraa.com

64

Emotions is a data set provided by Trohidis et al. (2008) for the automated de-

tection of emotion in music. There are 593 songs with 6 clusters of music emotions

comprising of amazed-surprised, happy-pleased, relaxing-calm, quiet-still, sad-lonely,

and angry-fearful. The total number of audio features is 72 features falling into 2

categories: 8 rhythmic features and 64 timbre features.

Scene is an image data used in the experiment of semantic scene classification.

Boutell et al. (2004b) prepared this data with 2,407 images associated with six dif-

ferent semantic scenes (beach, sunset, fall foliage, field, urban, and mountain). Each

image can be described by multiple class labels (e.g., a field scene with a mountain

in the background). Features are obtained by converting each image into L*U*V

space, dividing to 49 blocks, and computing the first and second moments (mean and

variance). So, the total number of features is 249 features (3× 49× 2).

MediaMill is a generic video indexing data set provided by the MediaMill research

group (Snoek et al. 2006). The original data uses 85 hours of video from the 2005

NIST TRECVID benchmark (i.e. the TRECVID 2005 training set), containing news

sources, recorded in MPEG-1 during November 2004 by the Linguistic Data Consor-

tium. The objective is to automatically detect semantic concepts for each video shot.

There are 43,907 video shots described by 120-dimensional visual feature vectors on

101 semantic concepts, such as people, face, outdoor, sky, and etc.

4.2 Classifier Induction from Decision Trees

This section discusses the details of our first research in text categorization. It was

inspired by EUROVOC, a large scale text corpus which is described by tens of thousands

www.manaraa.com

65

of features, which, of course, leads to extreme induction costs. To help reduce these

costs, the system, called “fast decision-tree induction (FDT),” was developed. It

identifies a subset of features likely to contribute to the classifier’s accuracy and

discards the other features; then, a set of decision trees is induced from subsets of

the training examples. In the classification phase, the output class is obtained by

combining the results of the induced decision trees.

The idea to apply decision trees to text categorization appeared as early as in 1994

(Yang 1999). As of now, most decision-tree generators rely on memory-resident data,

and often are prohibitively expensive when dealing with very large data sets. Perhaps

the best-known exception is SLIQ (Mehta et al. 1996) which eliminates a major part

of the (sometimes repetitive) calculations by the use of two pre-sorted-data struc-

tures: class list and attribute list—several improvements have been proposed, among

them SPRINT (Shafer et al. 1996) that does not use the class list and some other

techniques that rely on various heuristics such as those searching for optimum splits of

numeric attributes (Chandra et al. 2002; Chandra and Varghese 2008). Efforts along

these lines improve the scalability of decision-tree induction (Quinlan 1993; Quinlan

1996), but they are impaired by a high complexity in terms of implementation. To

avoid this complication, Quinlan’s C4.5 (Section 2.3.1), the most widely used decision

tree, was chosen to use in FDT because of its promising classification accuracy and

reproducibility of the experiments since it is easy to obtain from his public-domain

software11.

To create a multi-label classifier on the EUROVOC data set, induction of neither

a single multi-label classifier nor a set of binary classifiers can handle it due to the

11http://www.rulequest.com/Personal/

www.manaraa.com

66

very large computational costs; methods to reduce them need to be found. This is

why we developed the FDT system. The concept and the implementation of FDT

will be explained in Section 4.2.1 and Section 4.2.2, and then its results of extensive

experiments in terms of computation time and classification accuracy will be reported

in Section 4.2.3. Finally, Section 4.2.4 will provide the comparison to other well-known

classification algorithms, such as SVM.

4.2.1 FDT Concepts

FDT handles multi-label data by inducing a binary classifier which is C4.5 for each

class separately. To reduce the computational costs of tree induction, FDT employs

“feature pre-selection” and “data partitioning,” the latter seeking to induce a set of

decision trees from different subsets of the training data. The mechanism to combine

the results of these decision trees uses the fact that they are induced from data with

imbalanced classes, where the negative examples outnumber the positive ones.

Feature pre-selection. In preliminary experiments, we worked with a simplified

version of the EUROVOC collection (Sarinnapakorn and Kubat 2007) with 4,000

features. We found that none of the induced trees used more than 700 features; this

indicates that many features are unnecessary, and their removal is thus unlikely to

impair the induced classifiers’ performance.

When building the decision tree, C4.5 calculates at each node the gain ratio for

every feature. The complexity of this process is O(fn) where f is the number of fea-

tures and n is the number of nodes. Thus for 1,000 nodes, we need to compute about

4 million gain ratios (4,000 features × 1,000 nodes). To reduce these computational

www.manaraa.com

67

costs, we remove r% of the lowest-gain ratio features prior to decision-tree induction.

The number of chosen r% will be discussed in the experiments.

Data partitioning. The computation time of decision tree induction grows

supralinearly in the number of training examples. Using a smaller training set can

thus significantly reduce computational costs—in our preliminary experiments, CPU

usage dropped to only about 5% when we reduced the training set from 8,000 to 2,000

examples.

Decision tree algorithms typically follow two steps: tree construction and prun-

ing. Eliminating the pruning phase saves additional costs. Preliminary experiments

indicated that the performances of unpruned tree and pruned tree did not differ much

on small data samples.

Data Fusion. FDT partitions the training data, and then induces a separate

decision tree for each partition. What is needed is a mechanism that these trees

use to vote about the final outcome. Traditionally, three data fusion techniques

have been used. (1) Best classifier : predict the class recommended by the classifier

that is (heuristically) deemed to have the highest chance of being correct. (2) Plain

majority voting : each classifier has the same weight and the system outputs the class

that receives the most votes, breaking the ties in favor of classes more frequently

represented in the training set. (3) Weighted majority voting : confidence scores are

used to weigh the voting classifiers.

The fusion method we used in FDT is called One-Vote and is summarized by the

pseudo code in Table 4.2. Since the number of positive examples is small, the induced

trees rarely predict the positive class. To increase the probability of the positive

outcome, FDT is biased toward the minority class, using the rule, “the output class

www.manaraa.com

68

is positive if at least one of the subclassifiers said so.” The strategy is simple and

performs better than other data fusion techniques.

4.2.2 The FDT Program

The FDT technique is summarized by the schema in Figure 4.1 and the pseudo-

code in Table 4.2. The program consists of three main modules. The first, “data

partitioning,” divides the data into N non-overlapping, equally-sized subsets, each

maintaining the same ratio between positive and negative classes. The second mod-

ule, “subclassifier construction,” uses C4.5 to induce a subclassifier for each subset.

To accelerate induction, feature pre-selection removes r% attributes before the tree

induction begins. The last module implements the “data fusion” for the classification

stage.

Subset1

2) Feature

Pre-selection

Subclassifier 1

Prediction 1

Subset2

2) Feature

Pre-selection

Subclassifier 2

Prediction 2

SubsetN

2) Feature

Pre-selection

Subclassifier N

PredictionN

1) Data Partitioning

Large Scale Data

3) Data Fusion

Output

...

Figure 4.1: An essential framework of FDT.

www.manaraa.com

69

Table 4.2: The pseudocode of FDT

main(train, test, N, r)

1 ⊲ Training Process
2 ⊲ 1) Data partitioning
3 ratio← get ratio(train);
4 subtrain← parition(train, ratio, N);
5
6 ⊲ 2) Subclassifier construction
7 for i← 1 to N

8 do subtrain[i]← remove att(subtrain[i], r);
9 subtrees[i]← c4.5(subtrain[i]);

10
11 ⊲ Testing Process
12 ⊲ 3) Data fusion from all subclassifiers
13 for j ← 1 to size(test)
14 do output[j]← onevote(subtrees, test[j]);

onevote(subtrees, unknown)

1 for i← 1 to size(subtrees)
2 do pclass← eval(subtrees[i], unknown);
3 if pclass = minor class

4 then break;
5 return pclass;

4.2.3 Experiments and Discussion

We applied FDT’s to a our version of EUROVOC database (Sarinnapakorn and Kubat

2007): 10,000 documents described by 4,000 features, each document being labeled

by 30 classes. We simplified our work by conducting experiments on the first five

class labels to reduce experimental time. All graphs in this section were obtained as

averages from 3-fold cross-validation. The statistical significance of the differences in

performance has been checked by the paired t-test with confidence level 95%.

The task for the first experiment was to find out how many features should be

removed during the feature pre-selection stage. We experimented with four alterna-

www.manaraa.com

70

tives: 0%, 25%, 50%, and 75% features removed. Figure 4.2 shows the results in

terms of CPU time and tree size. The reader can see that the removal of 75% at-

tributes saved more than 50% time. The reader may be surprised that the removal of

25% attributes actually increased the costs. The reason is the overhead time of the

calculations of gain rations and on sorting these numbers.

Figure 4.2: CPU time and size of trees with varied percentages of removed attributes.

Figure 4.3 shows that feature pre-selection did not affect classification perfor-

mance: even with the removal of 75% features prior to induction, the performance of

the induced classifier did not drop more than 0.1 in terms of F1, yet we gained more

than 50% in computation costs.

One of the most important aspects of FDT is that it induces, for a given class, a

set of decision trees in which each from a different subset of the training set. When

used to classify a testing example, these trees combine their outputs. The motivation

is simple: the costs of decision tree induction grow supralinearly in the number of

examples; therefore, inducing N decision trees, each from one 1
N

of the data is much

www.manaraa.com

71

Figure 4.3: A comparison in the performance of varied percentages of removed at-
tributes using the feature pre-selection mechanism.

faster (even if they are induced serially, one after another) than the induction of a

single tree from the entire training set.

The task for the second experiment is to put this conjecture to test. We measured

the CPU time needed to induce decision trees from training sets of different sizes.

In particular, we used 1000, 2000, 4000, 6000, and 8000 examples, and measured the

induction time separately for the case with all features and for the case with 25%

most promising features. The results are depicted in Figure 4.4. For instance, if

2000 examples are used, induction is one hundred times faster than when the entire

training set is used. The graph also shows that the computational costs grow more

slowly in the case where only 25% features are used.

Thus encouraged, we proceeded to the next experiment whose task was to establish

how much the computational costs depends on the number of subclassifiers. The

results are shown in Table 4.3 and Figure 4.5, again separately for the case where

all features were used and for the case where 75% features were removed prior to

www.manaraa.com

72

induction. The first row gives the CPU times of the induction of a single decision

tree from the entire training set; the second row gives the CPU times for the induction

of three decision trees, each from one third of the training examples; the third row

gives the CPU time for the induction of five decision trees, each from one fifth of the

examples. Note that, in the case of removal of 75% features, only about 1% of the

CPU time for the whole single tree induction is needed.

Importantly, we must make sure we do not pay for the impressive time reduction by

unacceptably compromised classification performance. This was the task for the final

experiment. Figure 4.6 provides detailed results along the micro and macro averaging

performance criteria. In the experiments, we always induced three decision trees from

three non-overlapping training subsets. Testing examples were submitted to all trees

in parallel, and the results were combined by the fusion mechanisms discussed in

Section 4.2.1. Then we induced five decision trees from five non-overlapping training

subsets and repeated the experiment. Each graph represents a different performance

criterion; in all cases, four different ways to combine the decision tree outputs are

plotted: majority voting versus the “One-Vote” method, each plotted separately for

the case with all features and for the case with 75% features removed.

All in all, the reader can see that the majority-vote mechanism performs better

on negative examples; on the positive examples, the One-Vote methods is better. For

the needs of the text-categorization domain, high rate on the positive examples is of

course more important if we want to deal with the problem of imbalanced classes.

The One-Vote mechanism also statistically outperforms the majority-vote along the

F1-criterion.

www.manaraa.com

73

Figure 4.4: CPU time on varied sizes of data.

Table 4.3: CPU time on varied numbers of subclassifiers
Max. Building Time (sec.)

#Subsets Full Att. Remove 75%
1 1,846.3 ± 48.2 864.6 ± 31.7
3 119.7 ± 8.9 32.7 ± 0.3
5 31.7 ± 1.0 8.8 ± 0.2

Figure 4.5: CPU time on varied numbers of subsets.

www.manaraa.com

74

In conclusion, we can say that, although the F1-results are somewhat better when a

single decision tree is built, the multiple-decision-tree solution still deserves attention:

the modest loss in classification performance is more than compensated by the large

reduction of induction costs. Especially when 75% of features removed and 5 subtrees

induced, the induction time was dropped to only 8.8 seconds from 1,849.3 seconds

comparing to that of the single large decision tree.

4.2.4 Performance Comparison to SVM

The objective of FDT is to present a way to induce a decision tree on large scale

data which require a high computational cost on the traditional decision algorithm.

As shown in the results in the previous section, it achieved the goal by significantly

reducing induction time spent, but somewhat decreasing in accuracies.

Is FDT superior to other classification techniques, such as SVM? To find the

answer, experiments of SVM following the previous section were conducted. Note that

we induced the SVM by using the publicly available package svmlight12 (Joachims

1999). Table 4.4 shows the comparison among the single decision tree, FDT, and

SVM. The single decision tree outperformed the others in terms of accuracy, but

suffered the prohibitive computational cost. FDT showed the most compromised

result because its induction time was the most promising although its accuracy was

less than that of the single tree, but it was still as good as that of SVM.

However, this comparison also motivated us to develop an alternative solution

based on SVM as shown details in Section 4.3. Although the accuracies of SVM were

less than those of the single tree, its induction time was still impressive, only about

12http://svmlight.joachims.org/

www.manaraa.com

75

(a) Micro Precision (b) Macro Precision (c) Micro Recall

(d) Macro Recall (e) Micro True Negative Rate (f) Macro True Negative Rate

(g) Micro F1 (h) Macro F1

Figure 4.6: A comparison in the performance of varied numbers of subclassifiers.
X-axis represents the number of subclassifiers and Y -axis represents measures in
performance criteria.

www.manaraa.com

76

Table 4.4: Performance comparison among the baseline decision tree, FDT, and SVM.

Algorithms Micro. F1 Macro F1

Induction time
for each class

in seconds

Baseline Decision Tree 0.65 ± 0.019 0.60 ± 0.003 1,846.3 ± 48.2
FDT: 5 subsets with 25% features

0.54 ± 0.002 0.47 ± 0.002 8.8 ± 0.2
using “One-Vote”
SVM 0.54 ± 0.015 0.46 ± 0.017 137.6 ± 4.8

2 minutes (137.6 seconds). So, we believed that the accuracies of SVM can further

be improved by using some modifications at acceptable extra computation costs.

4.3 Classifier Induction from Optimized Support

Vector Machine

This section demonstrates our extended research based on SVM in domains of

multi-label classification by induction of a separate binary classifier for each class.

SVM has been successfully applied in solving the classification problems offering su-

perior performance. However, its success is often impaired by the phenomenon known

as imbalanced training set – negative examples outnumbering the positive ones or the

other way round.

In a typical implementation, SVM first maps the training examples to a space

where the classes have a higher chance of being linearly separable, and then finds the

parameters (~w as orientation and b as translation) of a hyperplane to accomplish this

separation. When doing so, SVM seeks to maximize a margin separating between two

classes while minimize the probability of future training examples being misclassified.

www.manaraa.com

77

This, however, means to minimize the error rate which can be a highly misleading

indicator when it comes to classification performance in domains with imbalanced

class representation. Consider the case where 1% training examples are positive, and

all the remaining 99% are negative. A classifier that labels every single example as

negative will exhibit the impressively low error rate of 1%, and yet it is virtually

useless on account of being unable to identify a single positive example. This is why

many researchers prefer to work here with performance metrics borrowed from the

field of information retrieval: precision, recall, and Fβ . It stands to reason that a

classifier induced in a way that optimizes one criterion may disappoint when evaluated

along another; and indeed, SVM’s behavior in multi-label domains is usually good in

terms of error rate, but often leaves a lot to be desired when measured by, say, Fβ .

To alleviate this problem, three basic strategies have been employed: (i) resam-

pling (undersampling and oversampling), (ii) weighting (each class associated with

different misclassification costs), and (iii) thresholding (manipulating the offset of

the separating hyperplane). Studies comparing these methods have shown that the

thresholding strategy often outperformed the other two (Brank et al. 2003; Sun et al.

2009). The reason is that the resampling strategy changes the distribution of train-

ing data that can lead to a declined orientation of the hyperplane and the weighting

strategy is, in fact, equivalent to the oversampling approach. While the thresholding

strategy directly optimizes a bias of the hyperplane without changing any character-

istics of the training data.

But even in the field of threshold adjustment, the results are not ideal because

existing methods suffer from high classification costs and suboptimal classification

behavior (Brank et al. 2003; Li et al. 2008; Goertzel and Venuto 2006; Lewis et al.

www.manaraa.com

78

2004b; Peter et al. 1998; Shanahan and Roma 2003; Yan et al. 2009; Imam et al. 2006).

Seeking an improvement, we therefore developed a new technique, R-SVM, that in

our experiments compared favorably not only with the baseline SVM, but also with

such thresholding algorithms as SVMF1
(Brank et al. 2003), SVMCV (Brank et al.

2003), ScutFBR (Lewis et al. 2004b), and BetaGamma (Peter et al. 1998; Shanahan

and Roma 2003).

This section is organized as follows. Section 4.3.1 gives an overview of the thresh-

olding techniques. The concepts and details of the developed framework are presented

in Section 4.3.2. The experiments and discussion are reported in Section 4.3.3.

4.3.1 Threshold Adjustment

The thresholding strategy, which is also called “threshold adjustment” or “threshold

relaxation”, is a post-process to translate the hyperplane, h(~x) = f(~w, b) = ~w ·~x+b =

0, (without changing the orientation) by the adjustment of the bias b as indicated

by Figure 4.7. The assumption behind this strategy is that the orientation of the

hyperplane (~w) is already in the best direction and does not needed to be altered.

The goal illustrated by Formula 4.1 is to search for the best threshold θ that shows

the highest performance function perf , such as the F1-criterion, given the data set S

mapped onto the SVM space, L = {(s1, y1), ..., (sn, yn)}, and all possible thresholds,

Θ. The SVM hyperplane is then updated to h∗(~xi) = h(~xi)− θ.

{θ ∈ Θ|θ = max(perf(L, Θ))} (4.1)

Brank et al. (2003) and Sun et al. (2009) showed that this technique can improve

classification performance at acceptable computational costs. Several methods to find

www.manaraa.com

79

+

+ +

+

h

Positive class (c = +1)

Negative class (c = -1)

+

+ +

+

h*=h-θ

Positive class (c = +1)

Negative class (c = -1)

Margin ɣ
ξ 1

+ +
+

ξ 2 ξ 3 → w

Margin ɣ
ξ 1

+ +
+

ξ 2 ξ 3

→ w

x1x1

x2x2

Figure 4.7: SVM hyperplanes before (left) and after (right) threshold adjustment.
The classification of three examples is corrected.

an optimum threshold have been proposed. The approaches advocated by Yan et al.

(2009) and Li et al. (2008) rely on the Gaussian distribution assumption, with the

obvious limitation that the behavior is suboptimal in the case of other distributions. A

more general approach is presented by Goertzel and Venuto (2006) who used a simple

heuristic to estimate the cut-point between positive and negative distributions, but

they did not address the case where the number of cut-points is more than one.

Brank et al. (2003) compared among different thresholding algorithms such as

maximizing the values of F1 over the whole training data (SVMF1
) and cross-validation

over subsets of training data (SVMcv). The latter thresholding method was proposed

to reduce the danger of overfitting the result b to the training data. It firstly generates

stratified N -fold cross-validation (CV), and then, for each “CV,” induces the SVM

classifier on 80% of the training data and searches for the threshold with maximum

F1 on the remaining 20%; finally the N thresholds are averaged as an output thresh-

old. The experiments indicated that both methods significantly improved over the

www.manaraa.com

80

baseline SVM, and especially the cross-validation thresholding one showed the best

results. ScutFBR (Lewis et al. 2004b) is another thresholding algorithm that relies on

heuristics tied to N -fold cross-validation and showed promising results. However, the

need of SVMcv and ScutFBR to generate N SVM classifiers adds to computational

costs.

Moreover, this kind of the thresholding procedure tied to N -fold cross-validation,

such as SVMcv, may not be able to give the suitable threshold θ to adjust the hy-

perplane, ~h = f(~w, b), which was induced during the training process. Let us recall

the concept of the thresholding strategy that aims to find the best translation θ by

modifying b at “a specific orientation ~w”. For the N -fold cross-validation threshold-

ing approach, there are N SVM hyperplanes generated for each CV, ({h1, ..., hN} =

{f(~w1, b1), ..., f(~wN , bN)}). Thus, the adjusted threshold for each CV ({θ1, ..., θN})

maximizes F1 on the “different” orientation ({ ~w1, ..., ~wN}) leading to their average as

an output threshold (θ = average(θ1, ..., θN)) not optimized to the orientation ~w of

the target hyperplane.

Some researchers chose to optimize other performance measures than F1. Thus

Imam et al. (2006) describes z-SVM that maximizes the geometric mean (gmean),

gmean =
√

acc+ × acc−, where acc+ and acc− are the classification rate for posi-

tive and negative classes respectively, a metric recommended by Kubat and Matwin

(1997). Peter et al. (1998, Shanahan and Roma (2003) developed BetaGamma which

applies adaptive filtering based on linear utility calculated as (2 × TP − FP). The

experimental results showed that z-SVM and BetaGamma outperform the baseline

SVM based on gmean and F0.5 consecutively. However, no performance evaluation

along F1 has been undertaken.

www.manaraa.com

81

4.3.2 R-SVM Concepts

R-SVM, a developed threshold adjustment technique, not only improves SVM perfor-

mance on imbalanced data, but also overcomes all issues of the previous thresholding

works mentioned in the previous section, especially high computational cost and over-

fitting problems. The flowchart from Figure 4.8 explains its place in the whole scheme:

after the induction of SVM, R-SVM employs “potential best threshold selection” to

search for a set of important candidate thresholds Θ, and then “best threshold esti-

mation” to calculate the non-overfitting threshold θ to update the SVM model.

Potential Best Threshold Selection

Regarding to Equation 4.1, a set of all possible thresholds Θ must be provided for

the thresholding process. The size of this set affects the additional thresholding time;

thus, it is important to select only potential thresholds as indicated in the flowchart

Box 2.1.

Let us now describe this concept based on an example in Figure 4.9. It illustrates

how, as a result of the bias toward the majority class, the mapping function incorrectly

labels all examples as negative. Each column represents an example. The second row

gives the SVM value of each example as calculated by Equation 2.13, and the examples

are ordered according to this value. The third row gives the true class label (positive

or negative). The reader can see that, at least as evaluated along the F1-criterion,

the results will be improved if we relocate the threshold to one of the locations called

“potential best thresholds.”

www.manaraa.com

82

Training Data

1) SVM Induction

L={(s1,y1),…,(sp,yp)}

SVM Model

Ypred = sign(h(x))

3) Updating SVM

Model

New SVM Model

Ypred = sign(h(x)-θ)

Training Data

Mapped on SVM

2) R-SVM

2.1) Potential Best Threshold Selection

Θopt

2.2) Best Threshold Estimation

(i) Generate N sampling sets from “the data set L”

(ii) Identify the best threshold for each training subset

Training

subset R1

Training

subset RN

...

The best

threshold (θ1)

The best

threshold (θN)
...

(iii) Average all best thresholds

The output threshold (θ)

S={(x1,y1),…,(xp,yp)}
→ →

Figure 4.8: The R-SVM based framework.

How do we find the best threshold? The simplest approach might consider any

center between a pair of adjacent sorted examples because it gives the maximum

separation in terms of distances. One such location is at (−1.5565 − 0.9967)/2),

another at (−0.9967− 0.8931)/2), and so on, giving us the total of nine candidates.

For each, we calculate the F1 and then pick the one with the highest value.

Since this can be expensive in the case of large training sets, we considered only

those pairs of neighboring sorted examples that differed in class labels called “po-

www.manaraa.com

83

tential best thresholds” , Θopt, (in Figure 4.9, there are three such locations). For

instance, in the large EUROVOC dataset, only 50 such locations exist.

Sorted Example (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

SVM Score -1.5565 -0.9967 -0.8931 -0.7532 -0.7293 -0.6784 -0.6769 -0.6748 -0.5367 -0.1091

True Class -1 -1 -1 -1 -1 +1 -1 -1 +1 +1

-0.7038 -0.6776 -0.6057Potential Best Thresholds

Figure 4.9: Illustration of the three potential best thresholds on the data set with 10
examples.

Best Threshold Estimation

The next task is to compute the suitable output threshold that is not overfitting to

any specific data sets as shown in the flowchart by Box 2.2. This can be accom-

plished in three steps: (i) generating several training subsets from the training data

on the SVM space, (ii) in each training subset, identify the best threshold, and (iii)

obtain the output threshold as an average value of these best thresholds. For in-

stance, suppose there are three “potentially best thresholds,” {1.1, 1.7, 2.1}, and let

the evaluation in five training subsets identified the following “winners,” respectively:

{1.1, 1.1, 1.7, 1.1, 2.1}. The final threshold is then the average of these: θfinal = 1.42.

Let us compare this procedure in R-SVM to the previous thresholding works in

Section 4.3.1. R-SVM can be applied to more domains than the methods proposed

by Yan et al. (2009), Li et al. (2008), and Goertzel and Venuto (2006) because there

is no data distribution assumption. Comparing to SVMF1 (Brank et al. 2003), R-SVM

can reduce a risk of overfitting the result to a specific data by using several training

subsets.

www.manaraa.com

84

Comparing to the thresholding methods tied to cross-validation, such as SVMcv

(Brank et al. 2003) and ScutFBR (Lewis et al. 2004b), R-SVM constructs N train-

ing subsets from “the training data mapped on the SVM space” ({R1, R2, ..., RN}),

while those methods generate N -fold cross-validation from “the original training data”

({CV1, CV2, ..., CVN}) and then induce N SVM classifiers just to find the threshold.

In terms of the computational cost, R-SVM is much faster than those methods since

it does not generates any extra SVMs (induces only “one SVM” from the entire train-

ing set). Furthermore, the output threshold of R-SVM is more suitable for the target

hyperplane than that of the cross-validation based methods. Table 4.5 shows the

proof of our claim, where {θ1, ..., θN} is a set of all best thresholds for N training

subsets, and θ denotes the output threshold. On the one hand, all best thresholds for

each training subset in R-SVM unanimously maximizes the performance of the target

hyperplane, f(~w, b); on the other hand, SVMcv gives a set of all best thresholds maxi-

mizing different hyperplanes, f(~wi, bi), in performance varied for each CVi. Thus, the

output threshold which is an average of all best thresholds ({θ1, ..., θN}) obtained in

R-SVM can actually improve the target hyperplane comparing to an average of those

in SVMcv.

Table 4.5: A comparison between R-SVM and SVMcv to find the estimate of the
output threshold θ which can be described by Equation 4.1.

Description R-SVM SVMcv

The best threshold θ1 max(perf(R1, f(~w, b),Θ)) max(perf(CV1, f(~w1, b1),Θ))
The best threshold θ2 max(perf(R2, f(~w, b),Θ)) max(perf(CV2, f(~w2, b2),Θ))

...
The best threshold θN max(perf(RN , f(~w, b),Θ)) max(perf(CVN , f(~wN , bN),Θ))

The output threshold θ average(θ1, θ2, ..., θN) average(θ1, θ2, ..., θN)

www.manaraa.com

85

R-SVM has implemented four ways to generate training subsets as follows:

• Boostrapping (BST) (Efron 1979; Chernick 2008) relies on a random sampling

with replacement, where each training subset has the same size as the original

data.

• Bootstrapping .632 (BST632) (Efron 1983) uses the sampling with replacement

in the same way as BST, but has a different calculation of the overall error,

err = 0.368errtrain + 0.632errsample, where errtrain is the error on the original

training data and errsample is the error on a training subset.

• Partitioning (PT) divides the data into N nonoverlapping subsets and considers

each single subset as a training subset.

• LeaveOnePartOut (LOPO) divides the data into N nonoverlapping subsets;

each union of (N − 1) subsets is treated as a training subset.

The experiments in Section 4.3.3 will show the above methods with the suitable

number of training subsets giving the best results. We always made sure that the

relative representation of the positive and negative examples was in each training

subset the same as in the original set (“stratified randomization”). Table 4.6 contains

R-SVM’s pseudocode.

4.3.3 Experiments and Discussion

We experimented with the six real-world databases presented in Section 4.1. For ex-

perimental convenience, we pre-processed these databases so as not to get distracted

by extremely rare classes and to limit the (impractically high) number of attributes in

www.manaraa.com

86

Table 4.6: The pseudocode of R-SVM

SamplingThresholding(L, Θ, N)

1 ⊲ L is a set of training examples mapped on SVM space represented by the tuples (si, yi).
2 ⊲ Θ is a set of potential best thresholds.
3 ⊲ N is the number of training subsets.
4
5 ⊲ Step 1: obtain the training subsets
6 R← generate strtified training subset(L, N);
7
8 ⊲ Step 2: in each training subset, identify the best threshold
9 for Sample Set i← 1 to length[R] ⊲ loop1: for each training subset

10 do for Threshold j ← 1 to length[Θ] ⊲ loop2: for each threshold
11 do Perf [j] = performance(R[i], Θ[j]);
12
13 ⊲ The best threshold for the ith training subset giving the maximum performance
14 T [i] = Θ[position(max(Perf))];
15
16 ⊲ Step 3: obtain the output threshold as an average value of these best thresholds
17 return θ = average(T); ⊲ The output threshold

some domains. In the case of EUROVOC and RCV1-v2, we ignored all classes represented

by less than six documents following our previous research (Vateekul and Kubat 2009;

Dendamrongvit et al. 2011). In the other domains, we ignored classes represented by

less than 10% of total examples because the setting in the previous research is too

low for any classes to be removed. For attribute selection, we followed the recom-

mendation from Section 4.2 and focused on attributes with the highest gain ratio

(Quinlan 1993). Specifically, we used 25% highest-gain-ratio attributes in EUROVOC

and RCV1-v2 and 50% highest-gain-ratio attributes for Emotions. In all other do-

mains, we used the complete set of attributes. For statistically reliable results, 5-fold

cross-validation (CV) was used. The data characteristics after pre-processing are

summarized as in Table 4.7.

www.manaraa.com

87

Table 4.7: The statistics of experimental data sets in R-SVM after our pre-processing.

Dataset Domain Features Classes Instances
% Positive Examples

Per Class
Average Min Max

EUROVOC text 4,000 20 10,000 22.44 4.51 55.22
RCV1-v2 text 4,000 53 6,000 5.17 0.88 44.55
Yeast biology 103 12 2417 30.28 1.43 75.13
Emotions music 72 6 593 31.15 24.97 44.55
Scene image 294 6 2407 17.89 15.07 22.11
Mediamill video 120 11 43,907 28.32 10.89 77.11

To facilitate the replicability of our experiments, we induced the SVM by the

publicly available package svmlight13 (Joachims 1999), relying on default parameter

settings wherever possible. The only exception was parameter γ (the width of the

gaussian distribution in the RBF kernel functions): in emotions and scene, we used

γ = 0.1 and γ = 0.01, respectively; in all other domains, we used the default setting,

where the value of γ is 1.

The experiments address two different aspects. First, we wanted to know which of

the four variations of R-SVM on their optimal number of training subsets would give

the best result. Second, the comparison between the best setting of R-SVM and other

thresholding algorithms was conducted. All results are expressed by macro-averaging.

The best version of R-SVM

This experiment aims to find the optimal setting of R-SVM before comparing to

other thresholding methods. There are four ways to generate training subsets in our

developed method: Bootstrap (BST), Bootstrap .632 (BST632), Partitioning (PT),

13http://svmlight.joachims.org/

www.manaraa.com

88

and LeaveOnePartOut (LOPO). Each of these methods was needed to search for the

suitable number of training subsets. Then we compared each of these methods and

chose the one giving its prominent performance in terms of F1.

The number of training subsets: In the case of BST and BST632 , we experimented

with the following numbers of training subsets for: 5, 10, 30, 50, 100, and 150.14 In

the case of PT and LOPO , we used the following numbers of training subsets: 3, 5,

10, and 20 sets (in MediaMill, the maximum was 10). If we wanted more disjunctive

subsets, they would become impractically small.

Figure 4.10 shows F1 and computation time of BST . As expected, the computation

costs grow linearly in the number of training subsets. As for F1, the optimum number

of subsets seems to be 50, when the performance reached its maximum in EUROVOC,

RCV1-v2, and Yeast; in the other domains, higher numbers of training subsets did

occasionally lead to further improvement, but the difference was not statistically

significant. The results for BST632 were so similar to those from Figure 4.10 that

there was no need to detail them here. Again, the optimum number of training subsets

was about 50.

Figure 4.11 shows the results for PT . Again, the computation costs grow linearly

in the number of training subsets. As for performance, the ideal number of subsets

is 10; for this value, F1 reaches its maximum in EUROVOC and MediaMill and is a

close second in RCV1-v2, Yeast, and Scene. The results of LOPO were so similar

to those from Figure 4.11 that we decided not to present them here. The optimum

number of training subsets was 5.

14In the domain MediaMill, we did not go beyond 50 training subsets because this is a large set
and the computation is costly.

www.manaraa.com

89

Comparison among different methods to generate training subsets: Table 4.8 sum-

marizes performance comparison among different sampling methods in R-SVM. When

“ranking” the individual algorithms along the F1 criterion, we used the ANOVA rank

followed by Bonferroni multiple comparisons (Delwiche and Slaughter 2008) in or-

der to test the statistical significance. The column headed by “ANOVA” gives the

ranking, with “A” denoting the solution deemed statistically best, “B” be second,

etc. The next column contains an output threshold θ from R-SVM applying different

choices of training subsets. This output threshold will be used to update the original

SVM hyperplane to ~h∗ = ~h − θ. Finally the rightmost column gives the additional

computational time consumed by the corresponding sampling methods.

Table 4.8: Performance comparison of R-SVM among different methods of generating
training subsets. Within each dataset, the techniques are sorted by their F1. For the
reader’s convenience, we also provide the ANOVA ranks.

Dataset Method ordered by F1 Precision Recall F1 ANOVA Threshold
Time

(seconds)

EUROVOC

1. PT 10 sets 0.8868 0.6492 0.7408 A -0.7098 1.11
2. BST 50 sets 0.8969 0.6401 0.7401 A -0.6866 18.21
3. BST632 50 sets 0.8964 0.6400 0.7391 A -0.6734 18.64
4. LOPO 5 sets 0.8801 0.6464 0.7313 A -0.6795 1.94

RCV1-v2

1. PT 10 sets 0.6320 0.6974 0.6466 A -0.5359 0.94
2. BST 50 sets 0.6342 0.6949 0.6463 A -0.5289 10.81
3. BST632 50 sets 0.6353 0.6927 0.6457 A -0.5244 12.10
4. LOPO 5 sets 0.6277 0.6988 0.6435 A -0.5391 1.17

Yeast

1. PT 10 sets 0.5231 0.5950 0.5524 A -0.3941 1.34
2. BST 50 sets 0.5176 0.6025 0.5500 A -0.3977 13.03
3. BST632 50 sets 0.5178 0.6023 0.5495 A -0.3956 13.32
4. LOPO 5 sets 0.5154 0.6062 0.5486 A -0.3963 1.46

Emotions

1. BST 50 sets 0.5597 0.7436 0.6318 A -0.7085 3.73
2. LOPO 5 sets 0.5519 0.7556 0.6291 A -0.7208 0.39
3. BST632 50 sets 0.5543 0.7474 0.6284 A -0.7130 3.80
4. PT 10 sets 0.5627 0.7148 0.6203 A -0.6755 0.56

Scene

1. BST632 50 sets 0.7742 0.8184 0.7941 A -0.4122 5.66
2. PT 10 sets 0.7782 0.8129 0.794 A -0.4050 0.54
3. BST 50 sets 0.7721 0.8178 0.793 A -0.4118 5.55
4. LOPO 5 sets 0.7714 0.8189 0.7929 A -0.4182 0.51

MediaMill

1. PT 10 sets 0.5302 0.667 0.5607 A -0.7219 99.98
2. BST 50 sets 0.5197 0.6973 0.5464 B -0.7289 3,237.26
3. LOPO 5 sets 0.5177 0.7043 0.5448 B -0.7322 314.81
4. BST632 50 sets 0.5178 0.7031 0.5447 B -0.7319 3,006.13

www.manaraa.com

90

From the table, the PT method was chosen due to its promising results in terms

of F1, especially in the data set MediaMill. Although the results of all methods were

not significantly different, R-SVM with PT-training subsets gave the highest F1 on

most data sets and always had the fastest thersholding time because it generates the

smallest size of training subsets. In the cases of BST and BST632, their results were

slightly worse than those of PT because their output thresholds were biased toward

duplicated examples in the same Boostrap training subset. Furthermore, BST632

outperformed BST only one data set, Scene, due to its calculation of the overall error

making its results in favor of the thresholds overfitting to the training data. The

results also indicated that LOPO gave the worst results on four out of six data sets.

Comparing R-SVM with other threshold-adjustment techniques

Let us now compare R-SVM’s performance with that of alternative threshold-adjustment

techniques proposed earlier: SVMF1
, SVMCV , ScutFBR, and BetaGamma. Recall

that they all seek an improvement over the original SVM (denoted below as SVMORG)

whose performance can therefore be seen as the lower bound on what can be achieved.

The upper bound, by contrast, can be estimated by the threshold giving the highest F1

on the testing set (which, of course, is unavailable at the time of induction, and there-

fore represents something like “perfect information”). In the experiments reported

below, parameter values in R-SVM are set in accordance with the recommendation

from the experiments in the previous section (i.e, 10 training subsets generated by

the PT method).

Table 4.9 sorts the performances of diverse threshold-adjustment methods by the

F1-values. The results of ScutFBR and SVMCV are always on the same line because

www.manaraa.com

91

their classification performance is indiscernible. The upper and lower bounds are

labeled, respectively, as SVMORG and “Best F1 on Test.” The rightmost column

gives the computation time. For each domain, the first row (“SVMORG (lower)”)

gives induction time of the plain SVM. Induction time of “Best F1 on Test” is omitted

because this row refers to values obtained only by “cheating”—considering the best

result possible on the testing set. Using this table, we wanted to answer the following

questions:

• Does R-SVM offer a significant F1-improvement over the original SVM?

• Do the multiple training subsets in R-SVM lead to an improvement over SVMF1
?

• Is the thresholding technique of R-SVM faster than that of SVMCV while still

providing comparable F1?

• Does R-SVM outperform previous threshold-adjustment algorithms such as

ScutFBR and BetaGamma?

Comparing R-SVM to SVMORG: The results summarized in Table 4.9 indicate

that R-SVM always outperformed the original SVM (significantly according to t-

test). We noted that SVMORG usually exhibited high precision but very low recall

(F1 was then low, too). We attribute this phenomenon SVM’s tendency to bias the

offset of the separating hyperplane toward the majority class (negative examples),

which results in a threshold that classifies most examples as negative. The shift of

the hyperplane in the opposite direction then corrects some of these misclassifications.

Consequently, the technique considerably improved recall by only a moderate loss in

www.manaraa.com

92

Table 4.9: Performance of diverse threshold-adjustment techniques. For each data
set, the techniques are sorted by their F1. The top rows, “SVM” and “Best F1 on
Test,” define the lower bound and upper bound, respectively. The performance of
ScutFBR is essentially the same as that of SVMCV .

Dataset Method ordered by F1 Precision Recall F1 Time (sec.)

EUROVOC

SVMORG (lower) 0.9430 0.2885 0.4266 1,505.19
Best F1 on Test (upper) 0.8943 0.6624 0.7539 N/A
1. SVMCV (ScutFBR) 0.8748 0.6727 0.7423 4,405.76
2. R-SVM 0.8868 0.6492 0.7408 1.11
3. SVMF1

0.8121 0.6731 0.6879 0.52
4. BetaGamma 0.9437 0.2865 0.4241 29.83

RCV1-v2

SVMORG (lower) 0.8707 0.4418 0.5451 55.93
Best F1 on Test (upper) 0.7292 0.6748 0.6934 N/A
1. SVMCV (ScutFBR) 0.7183 0.6313 0.6567 522.65
2. R-SVM 0.6320 0.6974 0.6466 0.94
3. SVMF1

0.6244 0.6985 0.6400 0.33
4. BetaGamma 0.6532 0.6540 0.5807 20.02

Yeast

SVMORG (lower) 0.7594 0.3893 0.4207 31.38
Best F1 on Test (upper) 0.5419 0.6821 0.5918 N/A
1. SVMCV (ScutFBR) 0.5174 0.6675 0.5735 144.65
2. R-SVM 0.5231 0.5950 0.5524 1.34
3. SVMF1

0.5129 0.6089 0.5473 0.37
4. BetaGamma 0.7505 0.3416 0.4021 2.51

Emotions

SVMORG (lower) 0.5995 0.4111 0.4436 0.63
Best F1 on Test (upper) 0.5926 0.7984 0.6652 N/A
1. SVMF1

0.5528 0.7499 0.6268 0.09
2. R-SVM 0.5627 0.7148 0.6203 0.56
3. SVMCV (ScutFBR) 0.3576 0.9733 0.5170 3.70
4. BetaGamma 0.6243 0.4245 0.4537 0.21

Scene

SVMORG (lower) 0.8933 0.6419 0.7383 12.67
Best F1 on Test (upper) 0.8116 0.8183 0.8111 N/A
1. R-SVM 0.7782 0.8129 0.7940 0.54
2. SVMCV (ScutFBR) 0.7815 0.8098 0.7936 63.46
3. SVMF1

0.7716 0.8191 0.7929 0.16
4. BetaGamma 0.8963 0.6311 0.7323 1.28

MediaMill

SVMORG (lower) 0.5667 0.3169 0.3522 13,271.52
Best F1 on Test (upper) 0.5297 0.6752 0.5923 N/A
1. SVMCV (ScutFBR) 0.5320 0.6639 0.5895 9,598.04
2. R-SVM 0.5302 0.667 0.5607 99.98
3. SVMF1

0.5155 0.7072 0.5444 81.99
4. BetaGamma 0.6276 0.3163 0.3518 390.86

www.manaraa.com

93

precision, thus improving F1. In diverse domains, the improvement of R-SVM over

the original SVM varied from 7.54% to 87.26%.

Moreover, the F1-results of R-SVM almost reach the best possible performance,

“Best F1 on Test.” Especially on the data sets EUROVOC and Emotions, the differences

in terms of F1 are only about 0.01, and, on the remaining data sets, the differences are

always less than 0.04. Besides, R-SVM is also acceptable in terms of computational

costs. Its threshold adjustment module adds less than 1% to the SVM induction time.

Comparing to SVMF1
: Table 4.10 shows the positive effect of R-SVM’s using mul-

tiple training subsets by comparing its performance with that of SVMF1
, a technique

that uses only a single training set. The reader can see that R-SVM significantly

(according to the t-test with 95.5% confidence level) outperformed SVMF1
on three

data sets, while SVMF1
never significantly outperformed R-SVM. We explain this by

SVMF1
’s tendency to overfit the training set. The added costs of R-SVM’s search

for the best threshold are only a fraction of a second on all data sets except for

MediaMill.

Table 4.10: Performance comparison of R-SVM and SVMF1
. The boldface font indi-

cates that the improvement is statistically significant. The numbers in parentheses
give the performance edge of the given technique over the original SVM.

Data set
Macro-averaging F1 Thresholding time (seconds)

R-SVM SVMF1
R-SVM SVMF1

EUROVOC 0.7408 (87.26%) 0.6879 (73.90%) 1.11 0.52
RCV1-v2 0.6466 (18.62%) 0.6400 (17.41%) 0.94 0.33
Yeast 0.5524 (31.30%) 0.5473 (30.10%) 1.34 0.37
Emotions 0.6219 (40.19%) 0.6216 (40.13%) 0.56 0.09
Scene 0.7940 (7.54%) 0.7929 (7.40%) 0.54 0.16
MediaMill 0.5607 (59.25%) 0.5444 (54.61%) 99.98 81.99

www.manaraa.com

94

Comparing to SVMCV : As far as the comparison with SVMCV is concerned, Ta-

ble 4.11 shows that R-SVM’s slight decline in F1 is compensated by considerable

savings in terms of the CPU-time needed to find the best threshold. The difference in

terms of F1 is always less than 0.02 (with 8% improvement over the original SVM) in

MediaMill. As for thresholding costs, SVMCV apparently paid a heavy price for the

fact that it has to generate many extra SVM models, something that R-SVM does

not do. Note that on the data set Emotions, R-SVM is not only superior to SVMCV

in terms of CPU-time, but also outperforms it in terms of F1.

Table 4.11: The comparison of R-SVM and SVMCV . The boldface font indicates a
statistically significant improvement. The numbers in parentheses give the perfor-
mance edge of the given technique over the original SVM.

Data set
Macro-averaging F1 Thresholding time (seconds)

R-SVM SVMCV R-SVM SVMCV

EUROVOC 0.7408 (87.26%) 0.7423 (87.63%) 1.11 4,405.76
RCV1-v2 0.6466 (18.62%) 0.6567 (20.47%) 0.94 522.65
Yeast 0.5524 (31.30%) 0.5735 (36.32%) 1.34 144.65
Emotions 0.6219 (40.19%) 0.5170 (16.55%) 0.56 3.70
Scene 0.7940 (7.54%) 0.7936 (7.49%) 0.54 63.46
MediaMill 0.5607 (59.25%) 0.5895 (67.42%) 99.98 9,598.04

Comparing to ScutFBR and BetaGamma: Since the F1-results of ScutFBR and

SVMCV are the same as illustrated in Table 4.9, our previous observations regarding

R-SVM’s superiority over SVMCV apply to ScutFBR as well. It should be noted

that ScutFBR uses cross-validation just like SVMCV , but it also uses a heuristic that

seeks to set the threshold higher in order to prevent the occurrence of false-positive

examples. However, in imbalanced data sets (especially negative examples outnumber

the positive ones), the original SVM always constructs a model with a high threshold.

Increasing this threshold even further therefore cannot improve the original SVM’s

www.manaraa.com

95

F1. By consequence, the heuristic in ScutFBR has never been used, and this makes

its results essentially the same as those of SVMCV .

As for BetaGamma, Table 4.9 shows that it falls behind R-SVM both in accuracy

and time. Moreover, this technique has always had the worst classification perfor-

mance among those we experimented with (even worse than the plain SVM on four

data sets). This is explained by the simple fact that it does not maximize F1, but

another criterion (linear utility).

4.4 Conclusion

In multi-label domains, it is customary to induce multiple binary classifiers, each for

a different class. The nature of these domains often means that the binary classifiers

usually have to be induced from heavily imbalanced class training sets. This circum-

stance is known to hurt the classification performance, particulary in terms of F1.

Moreover, data sets from some benchmark domains, such as text categorization, are

described by a large number of features, which leads to an extreme induction time.

This chapter demonstrates two of our contributed systems that cope with multi-label

classification on two issues: scalability and imbalanced training sets.

FDT is an efficient tree-based classification system. The idea is, first, to reduce

the number of features using the feature pre-selection mechanism and, second, to

induce sets of decision trees, each from a smaller subset of the training examples. In

the classification phase, the trees combine their outputs (data fusion) by a simple

mechanism that favors the minority class—this is important in domains with multi-

label examples where a separate binary classifier is usually induced for each class.

www.manaraa.com

96

R-SVM is an optimized SVM framework along our thresholding strategy. For

the sake of scalability, the feature selection of FDT is continuously applied to this

classifier, and SVM is chosen to be used as the baseline classifier instead of the

decision tree because its induction is faster. For the imbalanced training issue, the new

thresholding strategy is developed whose goal is to translate the hyperplane offset by

combining (e.g., by averaging) the results obtained from different training subsets. As

for the creation of training subsets, four methods were considered: Bootstrap (BST),

Bootstrap .632 (BST632), Partitioning (PT), and LeaveOnePartOut (LOPO). The

mechanism to generate the training subsets is costless because no extra SVM models

have to be induced. Experiments with six real-world benchmark domains showed

that R-SVM (with the PT mechanism) performed well in both terms of classification

performance and computational costs. It outperformed not only the classical SVM,

but also other thresholding methods previously proposed by the relevant literature:

SVMF1
, SVMCV , ScutFBR, and BetaGamma. In some experiments, the results almost

reached what we regard as the upper bound on the possible performance.

www.manaraa.com

97

Figure 4.10: Classification performance and the additional computational time in-
curred by threshold modification of R-SVM when the BST method was used to
generate training subsets.

www.manaraa.com

98

Figure 4.11: Classification performance and the additional computational time in-
curred by threshold modification of R-SVM when the PT method was used to gen-
erate training subsets.

www.manaraa.com

CHAPTER 5

Learning from Hierarchies in Functional
Genomics

This dissertation mainly focuses on hierarchical multi-label classification, a variant

of classification where examples may belong to multiple classes at the same time

and these classes are organized in a hierarchy. In this chapter, we explore two main

aspects of this domain. The first aspect is to present a novel learning algorithm

called “HR-SVM”, which is a hierarchical extended version of the proposed multi-label

classification technique, R-SVM, presented in Section 4.3. Performance evaluation is

the second aspect demonstrated in this chapter. We introduce a new hierarchical

classification measure called “example-label based macro-averaging measure”, which

is an extension of the traditional classification metrics, precision, recall, and F1.

The particular application targeted by this work is “gene function prediction”,

an important task in bioinformatics. Exploiting the functions of genes is expensive

and time-consuming since it involves many experimental lab processes by experts.

The automated classification system can offer a set of possible gene functions, which

can drive the biological validation and discover of novel functions of genes and gene

product, and, thus, lessen the experimental burden.

99

www.manaraa.com

100

Here is the task of this application in details: given an unknown gene (example),

the task is to classify its functions (classes) referring to a hierarchy of predefined

functions, e.g., Gene Ontology (GO) as shown in Figure 5.1. The class hierarchies

are no longer constrained to trees, but can be a “directed acyclic graph (DAG)”,

where each class can be inherited from multiple parents. Each gene may belong to

multiple classes at the same time (multi-label) and can be assigned to any classes in

the hierarchy (the non-mandatory leaf node problem (NMLNP)).

Cellular process

GO:0009987

Biological

process

GO:0008150

Developmental

process

GO:0032502

Multicellular

organismal process

GO:0032501

Cellular

developmental process

GO:0048869

Anatomical structure

development

GO:0048856

Multicellular

organismal development

GO:0007275

Anatomical structure

morphogenesis

GO:0009653

Organ development

GO:0048513

System development

GO:0048731

Nervous system

development

GO:0007399

Cell differentiation

GO:0030154

Cellular component

morphogenesis

GO:0032989

Figure 5.1: An example class hierarchy of immune system processes in the field of
Gene Ontology (GO).

This chapter is organized as follows. The developed hierarchical classification

framework, HR-SVM, is demonstrated in Section 5.1. Then Section 5.2 gives the

detail of the presented performance measure. Section 5.3 and Section 5.4 report the

experimental data and results respectively. Conclusion, discussion, and future work

are the topics for Section 5.5.

www.manaraa.com

101

5.1 HR-SVM Concepts

The detail of the proposed hierarchical classification framework, “HR-SVM”, is ex-

plained in this section. Note that all explanation and examples in this section are

based on the class hierarchy in Figure 5.2(a). HR-SVM is based on the top-down

approach by inducing a local classifier per class node and classifying unknown exam-

ples by employing classifiers from the root to leaves. Unlike other approaches, e.g.,

global approach, the top-down approach supports the domain of problems we are

interested in (DAG, multi-label, and NMLNP) with only some modifications of the

traditional machine learning methods. In the framework, R-SVM is considered as a

local classifier. The number of classifiers is equal to the number classes (nodes). For

instance, eight R-SVM’s classifiers have to be constructed for the class hierarchy in

Figure 5.2(a) except that there is no classifier at the root node.

Care is taken to follow the hierarchical constraint, the important criterion of hi-

erarchical classification. For instance, if the classifier C2 labels an example x as

negative, then x has to be labeled as negative also by classifiers corresponding to

C2’s subclasses: {C2.1, C2.2, C2.2.1, C2.2.2}. Conversely, x is classified as C2.2.2 if

the classifiers {C2, C2.2, C2.2.2} all issue the positive label for x. Figure 5.2(b) shows

a conceptual view of the top-down approach which is like a stack of filters (classifiers).

Positive experience with the top-down principle has been reported by several re-

search groups (Koller and Sahami 1997; Sun and Lim 2001; Nguyen et al. 2005; Secker

et al. 2007; Fagni and Sebastiani 2007; Fagni and Sebastiani 2010). It has many ad-

vantages in terms of simplicity, efficiency, and suitability to the target problem, the

gene function prediction. However, by observation of these papers, there are three

www.manaraa.com

102

0

1

1.1 1.2

2

2.1

2.2

2.2.1 2.2.2

(a) A DAG-structured class hierarchy

Binary Classifier C2

Tr(C2) = ↑(C2) = Tr
+
(C0)

Tr
-
(C2) = Tr(C2) \ Tr

+
(C2)

Binary Classifier C2.2

Tr(C2.2) = ↑(C2.2) = Tr
+
(C2)

Tr-(C2.2) = Tr(C2.2) \ Tr+(C2.2)

Binary Classifier C2.2.2

Tr(C2.2.2) = ↑(C2.2.2) = Tr
+
(C2.2)

Tr-(C2.2.2) = Tr(C2.2.2) \ Tr+(C2.2.2)

(b) A conceptual view of the top-down ap-
proach classifiers

Figure 5.2: (a) An example of the DAG-structured class hierarchy. The gray node
is a class with multiple parents. (b) A conceptual view of top-down classifiers from
Classifier C2 until Classifier C2.2.2.

critical factors which adversely affect performance. First, misclassifications commit-

ted at higher levels of the class hierarchy tend to get propagated downward, making

it hard to induce accurate classifiers for the lowest-level classes. There are two types

of errors generated by superclasses’ classifiers: (i) false negative (FN), positive exam-

ples classified as negative, and (ii) false positive (FP), negative examples predicted

as positive. Each of these errors causes different problems to the system and should

be treated separately. Second, inducing a separate binary classifier for each class

often leads to the situation where the training data are induced are heavily imbal-

anced (negative examples outnumbering positive examples), a circumstance known

to impair many machine learning techniques. Third, since different classes are often

characterized by different sets of attributes, it is necessary to run attribute-selection

techniques separately for each of them.

www.manaraa.com

103

HR-SVM is a novel top-down algorithm implemented to overcome those above

issues: error propagation, imbalanced training data, and irrelevant attributes. As

indicated in Figure 5.3, HR-SVM consists of four modules. The first three modules

are used for data pre-processing, and the last one, R-SVM (Section 4.3), is responsible

for induction from imbalanced training sets.

1) Exclusive Parent Training Policy

(EPT)

2) Local Feature Selection (LFS)

3) False-Positive Correction (FPC)

4) R-SVM

(Threshold Relaxation)

Training Data

Data Preprocessping

Processed

Training Data

SVM Model

Ypred = sign(h(x)-θ)

The class

hierarchy

Model Induction

Figure 5.3: The HR-SVM’s general architecture.

5.1.1 Exclusive Parent Training Policy (EPT)

For individual-node class induction, the first step is the generation of the correspond-

ing (binary) training set. Several methods have been proposed in the literature so

far (Silla and Freitas 2010; Fagni and Sebastiani 2007; Eisner et al. 2005). The one

www.manaraa.com

104

we use in HR-SVM is referred to as EPT (Exclusive Parent Training Policy). Note

that EPT is similar to the “siblings policy” in Fagni and Sebastiani (2007) which was

shown to be the best method to create binary training sets. Let us now describe it

in detail as follows.

Let Tr be the set of all training examples, let Tr(Ci) denote the set of training

examples used for the induction of class Ci, and let Tr+(Ci), and Tr−(Ci) denote the

sets of the positive and negative training examples of Ci, respectively. |Ci| denotes

the number of examples representing Ci, and ↑ Ci is the set of the parents of Ci.

Finally, “\” is the set exclusion operator. HR-SVM’s way of choosing the training

examples for the induction of Ci is defined as follows:

Tr(Ci) = Tr+(↑ (Ci))

Tr−(Ci) = Tr(Ci)\Tr+(Ci)

(5.1)

The set of Ci’s training data includes all positive examples of its parent class(es).

In that set, examples are labeled as positive if they belong to Ci, while the remaining

examples are labeled as negative. Thus, the number of training examples is equal to

the total number of examples belonging to the parent class(es).

Let us now illustrate the process of EPT by two examples.

• Example 1: on a class with one parent, such as C2.2:

– Tr(C2.2) = Tr(↑ (C2.2)) = Tr+(C2)

– Tr−(C2.2) = Tr(C2.2)\Tr+(C2.2),

Note that Tr−(C2.2) 6= Tr+(C2.1) because, if this is an NMLNP problem,

some examples in C2 may belong to neither C2.1 nor C2.2.

www.manaraa.com

105

• Example 2: on a class with multiple parents, such as C2.1:

– Tr(C2.1) = Tr+(↑ (C2.1)) = (Tr+(C1.2)
⋃

Tr+(C2))

– Tr−(C2.1) = Tr(C2.1)\Tr+(C2.1).

The advantages of EPT are best illustrated by the comparison with another policy

that has been used in the past, namely EAT (Exclusive All Training Policy) (Fagni

and Sebastiani 2007) (Note that EAT was called “ALL” policy by the original paper),

where each class is trained using the entire training set: Tr(Ci) = Tr, and Tr−(Ci) =

Tr\Tr+(Ci). Assuming that the root node represents |C0| = |Tr| = 1000 examples,

we have |C2| = 100 examples, |C2.2| = 50 examples, and |C2.2.2| = 10 examples.

The sizes of the training sets generated by EPT and EAT, respectively, are given

and compared in Table 5.1. The reader can see that, at the lower-level classes, EPT

generates smaller and more balanced training sets than EAT. This can benefit the

classification system in two aspects:

Table 5.1: Comparing the training sets generated by the EPT and EAT.

Class
The number of positive examples

versus the number of all training examples
EPT EAT

C2 100/1000 100/1000

C2.2 50/100 50/1000

C2.2.2 10/50 10/1000

First, the total induction time of all classifiers in EPT is faster that of EAT since

EPT generates smaller training sets than EAT. For instance, the number of C2.2’s

training examples followed by EPT is only 100 examples instead of using the whole

data, 1000 examples, in EAT. Furthermore, it is unnecessary to train the classifier

www.manaraa.com

106

C2.2 by C1’s examples because it is a responsibility of C2.2’s parent classifier, C2,

for removing those C1’s examples.

Second, EPT can help to improve a classification performance of the system be-

cause it creates training sets with less degree of imbalance than EAT as shown in

Table 5.1. Due to a large number of classes in this domain, a classifier always suffers

from the scarcity of positive examples in the training data. For instance, for C2.2,

the percentage of positive examples is extremely low in EAT (50
1000

= 0.05), while it

is higher (50
100

= 0.5) in EPT.

5.1.2 Local Feature Selection (LFS)

In our domains, the examples are often described by thousands of attributes, which

can lead not only to prohibitive induction costs, but also to performance degradation

if many of the attributes are irrelevant. Importantly, relevance of the individual at-

tributes can vary from class to class. Many scientists have studied attribute-selection

techniques (see, e.g., (Guyon and Elisseeff 2003)). We need one that is computation-

ally efficient, and we need to apply it separately to each class.

In our previous work (Vateekul and Kubat 2009; Dendamrongvit et al. 2011), we

made a good experience with first ordering the attributes by their gain ratio, and

then selecting a certain percentage of the highest ones. To estimate the gain ratio,

we used the formulas from Quinlan’s C4.5 (Quinlan 1993): they are easy to obtain

from his public-domain software, and thus facilitate replicability of the experiments

in this work.

www.manaraa.com

107

In HR-SVM, we improved this (rather simplistic) approach by choosing those

attributes that satisfy the following two conditions: the minimum accumulated gain

ratio (G% of total gain ratio) and the minimum number of attributes (P% of the

total number of attributes). The numbers of attributes followed the criteria G% and

P% are denoted by iG and iP attributes, respectively.

Figure 5.4 illustrates the flowchart of LFS. The algorithm first gathers the gain

ratio from the iG highest-ranking attributes until the summation of the gain ratio

meets the prior condition, G%. This guarantees that the selected attributes do not

lose too much information of the total gain ratio. However, the number of selected

attributes iG may sometimes be too small and affects the accuracy of classifiers.

Thus, the latter condition on the minimum number of attributes iP (or P% of the

total number of attributes) helps to avoid this problem. If iG < iP , this module will

collect more top-ranking attributes until the total number of chosen attributes is iP .

Minimum

accumulated gain

ratio, G%?

Minimum

#features , P%?

Selected features

Features sorted by

gain-ratio in

descending order

Yes

Yes

No

No

Figure 5.4: The LFS flowchart.

www.manaraa.com

108

The illustration of LFS is shown by the following examples; suppose the user has

set G = 95% and P = 25%:

• Example 1: let the gain ratios of the first example data set with 10 attributes

be {0.40, 0.30, 0.10, 0.10, 0.05, 0.01, 0.01, 0.01, 0.01, 0.01} (the summation of the

total gain ratios being 1.0). Under these conditions, the first five attributes will

be chosen because their sum of gain ratios is 0.95 (which satisfies the require-

ment of reaching at least 95% of 1.0), and five attributes are more than the

required 25% of the total 10 attributes (3 attributes).

• Example 2: let the gain ratios of the second example data set with 10 attributes

be {0.80, 0.15, 0.01, 0.01, 0.01, 0.01, 0.01, 0.00, 0.00, 0.00}, where the summation

of the total gain ratios also being 1.0. On this data set, the first criterion on G%

is satisfied by selecting only the first two attributes (iG = 2) or the overall gain

ratios equal to 0.95. However, one more attribute has to be included because

the second criterion on P% requires at least iP = 3 chosen attributes.

5.1.3 False-Positive Correction (FPC)

HR-SVM’s next module seeks to correct the false positives (FP)— “false positive

(FP)”, incorrectly classifying data as positive. These FP -examples are also known

as “incorrect path errors”. For instance, the classifier C2 wrongly classifies C1’s

examples, which come from the different path in the class hierarchy, as positive and

propagates these errors to its subclassifiers.

Let us explain how this kind of error affect the system by giving an example of the

classifier C2.2. The EPT policy ensures that classifier C2.2 is induced from examples

www.manaraa.com

109

belonging to the C2.2’s parent class, C2, and these do not include any examples of

C1. Suppose a testing example of C1 is incorrectly labeled by the C2-classifier as

positive as shown in Figure 5.5. This error is propagated to classifier C2.2, which

has never been trained using C1’s examples, and may therefore fail. This error is

then passed to C2.2’s subclasses, C2.2.1 and C2.2.2, which are likely to make the

same mistake as C2.2. In this sense the FP errors from C2 negatively affect the

performance of C2’s subclasses and the overall system.

0

1

1.1 1.2

2

2.1

2.2

2.2.1 2.2.2

Assume C2 incorrectly classifies
a C1's example as positive (FP).

Tr(C2.2) = ↑(C2.2) = Tr+(C2)

Tr
-
(C2.2) = Tr(C2.2) \ Tr

+
(C2.2)

C2.2 has never learnt C1's examples

Thus, C2.2 may propagate the error.

C1

C1

C1

Figure 5.5: A scenario in which C2 misclassifies a C1’s example as positive (FP).

HR-SVM addresses this issue by our False-Positive Correction strategy (FPC).

The idea is to add to Ci’s negative training examples, Tr−(Ci), also a set of FP

examples at Ci’s superclass(es) (denoted in Equation 5.2 by FP (↑ (Ci))), to give it

a chance to learn how to correct these FP ’s inherited from the parents. Note that

FPC cannot be applied to classifiers at the top level; the FPC process begins after the

SVM models of all Ci’s parents have been induced. These classifiers are then tested

on their own training data, and the results are used to identify the FP examples

which are finally added to the set of negative training examples at Ci, Tr−(Ci).

www.manaraa.com

110

Tr(Ci) = Tr+(↑ (Ci)) + FP (↑ (Ci))

Tr−(Ci) = Tr(Ci)\Tr+(Ci) + FP (↑ (Ci))

(5.2)

Figure 5.6 illustrates how the FPC strategy corrects the propagated FP -errors

shown in Figure 5.5. At Classifier C2.2, the potential errors propagated from its

parents, FP (↑ (C2.2)) = FP (C2), are added to C2.2’s training set; thus, there can

be more accuracy of Classifier C2.2 in identifying these propagated errors. Another

example is Classifier C2.1, which has multiple parents. The extra data set added by

the FPC strategy is FP (↑ (C2.1)) = FP (C1.2)
⋃

FP (2).

0

1

1.1 1.2

2

2.1

2.2

2.2.1 2.2.2

Assume C2 incorrectly classifies
a C1's example as positive (FP).

Tr
-
(C2.2) = Tr

-
(C2.2) + FP(↑(C2.2))

C2.2 has learnt possible propagated errors.
Thus, C2.2 stops propagating the error.

C1

C1

Figure 5.6: The propagated error shown in Figure 5.5 is fixed by the FPC strategy.

We expect that the FPC strategy can potentially decrease the number of false

positives, thus improving precision as well as F1.

5.1.4 R-SVM

R-SVM is the last module in Box 4 of the HR-SVM’s diagram. It is responsible

for inducing a non-biased SVM’s model on a set of training data generated by the

www.manaraa.com

111

first three modules. In addition, this module also aims to correct another type of

propagated errors called “false negative (FN)”.

In hierarchical classification domains with great many classes, negative examples

tend to outnumber positive examples. Traditional classifiers are biased towards the

majority (negative) creating the false negatives (FN). This kind of errors at the su-

perclasses causes what is called blocking which directly affects accuracies of classifiers

at the lower levels. For instance, Figure 5.7 illustrates that those of C2.2.2’s examples

which have been misclassified by classifier C2 as negative will not be recognized as

belonging to classes C2.2 and C2.2.2.

0

1

1.1 1.2

2

2.1

2.2

2.2.1 2.2.2

Assume C2 incorrectly
classifies a C2.2.2's example

as negative (FN).

C2.2 and C2.2.2 also classify this example

to preserve the hierarchical constraint.

C2.2.2

Figure 5.7: A scenario in which C2 misclassifies a C2.2.2’s example as negative (FN).

This issue can be addressed by reducing the bias towards the majority class in

the baseline classifier for each class in the hierarchy which commonly induces on the

imbalanced training set. The solution as demonstrated in Figure 5.8 is to replace the

traditional SVM for each class node by R-SVM, our previous work in Section 4.3.

R-SVM is a threshold adjustment algorithm specially proposed to rectify the imbal-

anced issue found in the traditional SVM; therefore, by employing it for each class

www.manaraa.com

112

node, the system is expected to have a decreased number of FN and to significantly

improve the performance in terms of recall and also F1.

0

1

1.1 1.2

2

2.1

2.2

2.2.1 2.2.2

R-SVMR-SVM

R-SVM

R-SVMR-SVMR-SVM

R-SVM
R-SVM

Figure 5.8: A non-biased classifier, R-SVM, is induced as a baseline classifier in order
to solve the FN issue.

5.1.5 Complexity Analysis

Yang et al. (2003) presented a complexity analysis of an SVM-based algorithm on

hierarchical as well as non-hierarchical domains. Since HR-SVM uses a threshold-

adjusted SVM (R-SVM) as its baseline classifier, its complexity can be derived from

this same analysis.

Let M be the number of classes, let N be the number of training examples, let V be

the number of attributes, and let Lv be the average number of non-zero attributes. On

multi-label (non-hierarchical) classification system, the training time of the traditional

SVM is O(MN c) (where c ≈ 1.2 ∼ 1.5 is a domain-specific constant), and its testing

time is O(MLv).

The training time of R-SVM is given by Equation 5.3, where c1 and c2 are con-

stant times for (i) finding a set of candidate thresholds and (ii) searching the output

www.manaraa.com

113

threshold, respectively. Since the process of threshold adjustment is applied after the

model induction, the first term in the equation is the SVM induction time, and the

second term is the evaluation time of the SVM model on training data.

Training Time = O(MN c) + O(MLv) + c1 + c2

= O(M(N c + Lv)) + c1 + c2

(5.3)

For the hierarchical classification system, the total complexity of the top-down

approach, including HR-SVM, is given by Equation 5.4, where h is the depth of the

hierarchy, b is the number of branches at the leaf nodes, mi is the number of classes

at the i-th level, i = {0, .., h} is an index for the hierarchical level, j = {1, ..., mi} is

an index for the class at the i-th level, nij is the number of local training examples,

Ni is the total number of training examples at the i-th level, N0 ≤ Ni, and πij is

defined as
nij

Ni
.

b× O(N c
0)

i=0∑

h−1

j=1∑

mi

πc
ij (5.4)

5.2 Proposed Evaluation

How to evaluate performance in the domain of hierarchical classification is not an

easy question, and the research community has not reached a consensus about how

to proceed. We aim to improve the situation by developing evaluation criteria that

we believe are sufficiently objective and robust.

Although there are evaluation criteria available for hierarchical classification as

explained in Section 3.4, they are not adequate to assess the goodness of classifiers in

www.manaraa.com

114

the hierarchical classification domain. To see the limitation of those criteria, consider

the domain from Table 5.2 and the class hierarchy from Figure 5.2. For five examples,

the table lists their true class labels as well as the labels assigned to them by the

classifier.

Table 5.2: An example of hierarchical classification results.
Example True Class Predicted Class

x1 C1.1 C1.2
x2 C2.2.1 C1.1, C2.2.1
x3 C1, C2.2 C2.2
x4 C1 C1.1
x5 C1.1 C1

This information is expressed in the matrix form in Table 5.3 (top) for the true

classes, and in Table 5.3 (bottom) for the classes predicted by the classifier. Note

that each row represents an example, and each column represents a class. The value

of a given field is “1” if the example belongs to the class and “0” if it does not.

The readers can see that the hierarchical measure in Section 3.4 evaluates only

the classification performance “for each example” across the row of the matrix. On

the other hand, the classification performance “for each class” is calculated along

the column of the matrix by the multi-label measure in Section 2.5.2. Thus, both

performance measures, “for each example” and “for each class”, are suggested.

Incidently, such combination was encouraged by the organizers of a recent com-

petition to develop the best system on “Large Scale Hierarchical Text Classification

(LSHTC2)”15. In their notation, the multi-label criteria are referred to as “Label-

based (Macro)” (LbMa), so that LbPr, LbRe, and LbF1 refer to multi-label precision,

15http://lshtc.iit.demokritos.gr/

www.manaraa.com

115

Table 5.3: The true class matrix T (top) and the predicted class matrix P (bottom)
for the examples from Table 5.2.

C1 C1.1 C1.2 C2 C2.1 C2.2 C2.2.1 C2.2
x1 1 1 0 0 0 0 0 0
x2 0 0 0 1 0 1 1 0
x3 1 0 0 1 0 1 0 0
x4 1 0 0 0 0 0 0 0
x5 1 1 0 0 0 0 0 0

C1 C1.1 C1.2 C2 C2.1 C2.2 C2.2.1 C2.2
x1 1 0 1 0 0 0 0 0
x2 1 1 0 1 0 1 1 0
x3 0 0 0 1 0 1 0 0
x4 1 1 0 0 0 0 0 0
x5 1 0 0 0 0 0 0 0

recall, and F1, respectively. Note that we ignore “Macro (Ma).” from the notations

since this work considers only macro-average. Similarly, the hierarchical (Example-

based) criteria are denoted by EbPr, EbRe, and EbF1, respectively.

Whether to prefer example-based criteria or label-based ones may be a matter of

some dispute, but a good classifier should satisfy both. In line with this argument, we

propose a simple way to accomplish just that. Denoting the criterion by the acronym

ELb (Example-Label-based), we define it by Equation 5.6 which is applied to the

classical criteria: precision, recall, and F1, as shown in Equation 5.6.

ELbFunc(Eb, Lb) = 2×Eb×Lb
Eb+Lb

(5.5)

www.manaraa.com

116

ELbPr = ElbFunc(EbPr, LbPr)

ELbRe = ElbFunc(EbRe, LbRe)

ELbF1 = ElbFunc(EbF1, LbF1)

(5.6)

In some domains, classes at the upper levels are more important than those at the

lower levels, so it is possible to modify this measure such that they receive more weight.

However, we decided not to include this modification yet because the classification

criteria without the weighting concept are more standard and suitable for comparing

the real performance among different hierarchical classification algorithms.

5.3 Experimental Data

We experimented with real-world databases in the field of functional genomics pro-

vided by the DTAI webpage16 (Schietgat et al. 2010) to predict gene functions of

three organisms:

Saccharomyces cerevisiae (S. cerevisiae) is a baker’s or brewer’s yeast. It

is one of biology’s classic model organisms, and has been the subject of intensive

study for years. The input feature vector for a gene consists of pairwise interaction

information, membership to co-localization locale, possession of transcription factor

binding sites and results from microarray experiments.

Arabidopsis thaliana (A. thaliana) is a small flowering plant native to Eu-

rope, Asia, and northwestern Africa. There are originally six datasets created by

Clare et al. (2006), originating from different sources: sequence statistics, expression,

predicted SCOP class, predicted secondary structure, InterPro, and homology. How-

16http://dtai.cs.kuleuven.be/clus/hmcdatasets/

www.manaraa.com

117

ever, only annotations for the top four levels are given. Then, Schietgat et al. (2010)

annotated the data into more levels.

Mus musculus (M. musculus) is a house mouse. This data is originally pro-

vided by MouseFunc challenge17. It consists of 21,603 genes of which 1718 are set

aside as test genes. The data consists of several sources: gene expression data, protein

sequence pattern annotations, protein-protein interactions, phenotype annotations,

phylogenetic profile, and disease associations. The version of the dataset we use in

our experiments is the preprocessed version provided by (Schietgat et al. 2010).

In this work, we worked with 8 data sets annotated by the functional hierarchy

in Gene Ontology (GO) whose structure forms a DAG. Each data set is described

by different aspects (attributes) of the genes that originate at diverse sources. The

characteristics of all experimental data sets are summarized in Table 5.4.

Table 5.4: Properties of data sets used in experiments: the numbers of examples |D|,
attributes |A|, classes |C|, and hierarchical levels |H|. “M?” indicates whether a data
set includes missing values – yes (Y) or no (N).

Organism Id Feature Description |D| |A| |C| |H| M?

S. cerevisiae D0 Joining all sources 3465 5931 132 7 N

A. thaliana

D13 Sequence statistics (seq) 11763 4451 629 6 Y
D14 Affy.’s experiments (exprindiv) 10840 1252 626 6 Y
D15 SCOP superfamily (scop) 9843 2004 571 6 N
D16 Secondary structure (struc) 11763 14805 629 6 N
D17 InterProScan (interpro) 11763 2816 629 6 N
D18 All microarray (expr) 11121 72870 622 6 N

M. musculus D19 Joining all sources 21153 18748 5620 13 Y

Since the data contained nominal attributes, and many values were missing, some

pre-processing was necessary.

17http://hugheslab.med.utoronto.ca/supplementary-data/mouseFuncI

www.manaraa.com

118

1. Data cleaning : Assuming that rare classes cannot be reliably induced, we ig-

nored all classes that were represented by less than 1% of total examples, which

is about 50 examples on all data sets, except in the very large domain D19

where this minimum was set to 200 examples. Then, we deleted examples with

none attribute values, and we, finally, removed attributes that were never used

in the “surviving” examples.

2. Missing value imputation: In the case of nominal attributes, we replaced a

missing value with the most common value; in the case of continuous attributes,

we used the average (mean). Note that missing data is commonly encountered

in real-world data; thus, a new imputation method, “Imputation Tree (ITree),”

has been developed in this dissertation to estimate missing values as reported in

Appendix A. However, ITree was not used in this work yet since it can handle

only the imputation of numerical data, not categorical data.

3. Nominal-to-numerical conversion: Some attributes were nominal, acquiring one

out of m different values. We converted each of these nominal attributes to a set

of m binary attributes. For instance, an attribute with three values, {A, B, C},

was replaced with the triplet of binary attributes whose possible combinations

of values were limited to (0,0,1), (0,1,0), and (1,0,0).

4. Data transformation: It is necessary to transform data if a range of feature

values is extremely small or large. Among all data sets, we applied log10 to

the data set D15 since the original range of values is small, [3.8E-123, 5.6E-108].

www.manaraa.com

119

5. Scaling range of feature values: The main advantage of scaling is to avoid fea-

tures in greater numeric ranges dominating those in smaller numeric ranges.

Hence, we normalized the values of numeric attributes to the interval [0, 1] in

the same way for both training and testing data.

Each domain provided by the DTAI website consists of 3 files that were originally

intended for training, validation, and testing, respectively. To facilitate the evaluation

of statistical significance of performance comparisons, we merged these three files in

one, and then used 5-fold cross-validation.

5.4 Experiments

HR-SVM induces a hierarchical classifier by a mechanism built around the publicly

available svmlight18. As for the kernel function, preliminary experiments revealed that

the linear function gave better results (in terms of F1) than the radial basis function

(RBF). This can be expected: the training examples being described by thousands

of attributes, the individual classes were easy to separate from each other linearly.

The task of the experiments reported below is twofold. First, to show that our

system outperforms earlier attempts known from the literature, namely H-SVM and

Clus-HMC19. Second, to find out how each of its modules (see Figure 5.3) contributes

to the overall performance. To this end, we added these modules one by one, ob-

taining the four variants listed in Table 5.5 where H-SVM is a hierarchical version

of the traditional SVM (Fagni and Sebastiani 2007; Fagni and Sebastiani 2010), and

18http://svmlight.joachims.org/
19The package is available at http://dtai.cs.kuleuven.be/clus/.

www.manaraa.com

120

HR-SVM-ALL is the complete system. The only exception were the experiments

with the domain D18 where only H-SVM-ALL could be experimented with—the

high number of attributes made it impossible to use SVM-based systems without

attribute selection (LFS).

All results are in terms of the example-label based macro-averaging (ELbMa)

version of the performance criteria from Section 5.2.

Table 5.5: Evolution of HR-SVM’s framework.
System Descriptions
H-SVM EPT + The baseline SVM
HR-SVM EPT + R-SVM
HR-SVM-FPC EPT + R-SVM + FPC
HR-SVM-ALL EPT + R-SVM + FPC + LFS; (all modules)

5.4.1 The system’s performance compared to previous work

A new technique is usually deemed useful if its performance compares favorably with

that of other techniques. Therefore, we compare here HR-SVM-ALL with H-SVM (a

hierarchical variant of SVM) and Clus-HMC (a global approach that relies on decision

trees).

The results in terms of F1 are summarized in Figure 5.9, and the computational

times are given in Table 5.6. The reader can see that, in terms of F1, HR-SVM-ALL

outperforms H-SVM in all domains, the results being particularly impressive in D0;

H-SVM achieved only F1 = 0.0929, whereas HR-SVM-ALL scored F1 = 0.4811 (an

improvement of more than 400%). The new technique induced faster than H-SVM on

all data sets except D14 and D17—in these, the efficiency of the employed attribute-

www.manaraa.com

121

Figure 5.9: Comparing the performance (along F1) of H-SVM, HR-SVM-ALL, and
Clus-HMC. The integers over each of the vertical bars give the ranks as obtained by
the ANOVA methodology followed by Bonferroni multiple comparisons.

selection technique was impaired by the additional time needed to process the FP

data sets (FPC). Comparing with Clus-HMC along F1, HR-SVM-ALL was signif-

icantly better on six out of eight domains. The induction time is comparable,

HR-SVM-ALL being faster than Clus-HMC in D0, D13, D16, and D17, and slower

in D14, D15, D18, and D19.

Table 5.6: The total induction time (in seconds) of HR-SVM-ALL and two other
systems, H-SVM and Clus-HMC.

Data set HR-SVM-ALL H-SVM Clus-HMC

D0 7.68 10.26 31.04
D13 204.68 357.75 999.27
D14 3,615.49 1,900.42 208.90
D15 13,641.90 17,408.56 159.44
D16 406.99 526.25 1,164.25
D17 141.36 100.76 146.05
D18 2,989.98 N/A 604.06
D19 17,691.80 23,334.07 3,396.86

www.manaraa.com

122

5.4.2 Contributions of HR-SVM’s modules

In the next step, we wanted to find out how much each of the modules listed in

Figure 5.3 contributed to HR-SVM’s classification performance (see Table 5.7). The

induction times of the individual consecutive steps are summarized in Table 5.8. The

following subsections discuss the classification-performance aspects.

Table 5.7: Hierarchical systems (see also Table 5.5) whose performance is to be com-
pared.

Module System Comparison
1. R-SVM HR-SVM vs. H-SVM
2. FPC HR-SVM vs. HR-SVM-FPC
3. LFS HR-SVM-ALL vs. HR-SVM-FPC

Table 5.8: Induction time (in seconds) of the top-down hierarchical classification
systems from Table 5.5. In each column, the percentages in the parentheses give the
time increase over the previous column.
Data set H-SVM HR-SVM HR-SVM-FPC HR-SVM-ALL

D0 10.26 10.33 (+<1%) 10.95 (+6%) 7.68 (-30%)
D13 357.75 358.24 (+<1%) 393.01 (+10%) 204.68 (-48%)
D14 1,900.42 1,901.23 (+<1%) 4,656.21 (+145%) 3,615.49 (-22%)
D15 17,408.56 17,408.77 (+<1%) 12,002.88 (-31%) 13,641.90 (+14%)
D16 526.25 527.11 (+<1%) 623.81 (+18%) 406.99 (-35%)
D17 100.76 101.11 (+<1%) 123.15 (+22%) 141.36 (+15%)
D18 N/A N/A N/A 2,989.98
D19 23,334.07 23,336.36 (+<1%) 40,320.39 (+73%) 17,691.80 (-56%)

The effect of R-SVM

In HR-SVM, SVM was replaced by R-SVM with the intention to reduce SVM’s bias

to the majority class (recall that our experimental domains were dominated by false

www.manaraa.com

123

negatives). The hypothesis that R-SVM helps is verified by comparing HR-SVM’s

performance with that of H-SVM.

The results in Figure 5.10 show that HR-SVM had better F1 than H-SVM in all

domains. In D0, HR-SVM’s F1-increase over the baseline SVM was more than 400%

(from 0.0929 to 0.4693). As for computational costs shown in Table 5.8, both systems

needed about the same time. This indicates that the additional thresholding time in

HR-SVM is very small (only at most 1% of the SVM induction time). Especially in

D19, we spent only 2.29 seconds to adjust the separation hyperplane in addition to

the induction time of the traditional SVM, 23,334.07 seconds.

Figure 5.10: Comparing HR-SVM with H-SVM in terms of F1. The stars above some
of the bars indicate significant improvements according to t-tests (0.05 level).

HR-SVM’s classification success was largely due to its significant improvement

of recall (as illustrated in Figure 5.11), which was achieved at the cost of slightly

reduced precision on some domains. However, the average of precision on all data

sets still increased by 25%. It shows that R-SVM properly adjusts the class-separation

hyperplane, thus alleviating the bias to the majority class, which in turn means that

www.manaraa.com

124

the number of false negative examples propagated downward the class hierarchy is

significantly reduced.

Figure 5.11: Comparing HR-SVM with H-SVM in terms of recall. The stars above
some of the bars indicate significant improvements according to t-tests (0.05 level).

The effect of FPC

Let us now compare HR-SVM-FPC with HR-SVM, thus establishing how the sys-

tem’s performance benefits from False-Positive Correction. Recall that false positives

occuring at higher levels are propagated to lower levels in the class hierarchy. The

total number of false positives can be high, leading to decreased precision and F1.

The summary of the experimental results (Figure 5.12) indicates that HR-SVM-FPC

outperforms HR-SVM in almost all domains. In 5 out of 7 domains, the improvement

is statistically significant. As indicated by Figure 5.13, this is due to FPC’s abil-

ity to increase precision in all eight domains (13% on average), while recall slightly

decreases on some domains. This points that the number of FP -errors propagated

throughout the system was indeed decreased.

www.manaraa.com

125

Figure 5.12: Comparing HR-SVM-FPC with HR-SVM in terms of F1. The stars
above some of the bars indicate significant improvements according to t-tests (0.05
level).

Figure 5.13: Comparing HR-SVM-FPC with HR-SVM in terms of precision. The
stars above some of the bars indicate significant improvements according to t-tests
(0.05 level).

www.manaraa.com

126

Table 5.8 shows how much FPC increases the computational costs (on account of

the extra false positives added to the training data). Note that, in D15, FPC led to

reduced induction time because the SVM model here converged faster in spite of the

training data being larger (a phenomenon explained by (Shwartz and Srebro 2008)).

The effect of LFS

The results of the comparison between HR-SVM-ALL and HR-SVM-FPC give us an

idea of the the contribution of the attribute-selection technique (LFS).

Recall that LFS relies on two user-defined parameters: (i) the minimum percent-

age of accumulated gain ratio and (ii) the minimum number of attributes. In the

experiments reported below, we relied on experience from our earlier research by set-

ting the former at 95% of the overall gain ratio (Dendamrongvit et al. 2011) and the

latter at 25% of the total number of attributes (Vateekul and Kubat 2009).

Comparing to HR-SVM-FPC in terms of F1, Figure 5.14 shows that HR-SVM-ALL

won on D0, D13, and D19, but lost on D17. The results of the remaining data sets

(D14, D15, and D16) are statistically indistinguishable. Figure 5.15 illustrates that

the removal of less relevant attributes indeed improved precision on all data sets,

besides D17.

Table 5.8 showed that LFS reduced the training time in most domains, most re-

markably in D19 where the training time was reduced by 56% while F1 also improved

by 2%. However, HR-SVM-ALL’s induction costs increased in D15 and D17. This is

caused by SVM’s inverse convergence (Shwartz and Srebro 2008). LFS is especially

useful in D18 where the number of attributes is so high, comparing to other data sets,

www.manaraa.com

127

Figure 5.14: Comparing HR-SVM-ALL with HR-SVM-FPC in terms of F1. The stars
and circles above some of the bars indicate significant improvements and declines
according to t-tests (0.05 level).

Figure 5.15: Comparing HR-SVM-ALL with HR-SVM-FPC in terms of precision.
The stars and circles above some of the bars indicate significant improvements and
decline according to t-tests (0.05 level).

www.manaraa.com

128

that memory-resident algorithms cannot load the whole data set into the computer’s

memory.20

In conclusion, attribute selection is beneficial in our experimental data sets, where

the examples are described by great many attributes. LFS increases F1 by improving

precision; it also reduces computational costs.

5.4.3 Performance at different hierarchical levels

Let us now try to gain more insight by comparing the classification performance of

HR-SVM-ALL, H-SVM, and Clus-HMC, at different levels of the class hierarchies.

Note that the label-based metrics (Lb) are here better suited than the example-

label based ones (ELb). The ELb-metrics evaluate the performance along the class

paths, such as C1→ C1.1→ C1.1.1, which does not make much sense when evaluat-

ing each class-level independently.

Three factors are known to affect an induced classifier’s performance: (i) the

training set size, (ii) the number of positive examples, and (iii) the data distribution

(e.g., the degree of imbalance). Hierarchical domains add one more factor: the “prop-

agated error”—the accuracy of lower-level classifiers is related to that of the parent

classifiers.

Table 5.9 summarizes the expected tendencies. Note that the accuracies of higher-

level classifiers suffer from highly imbalanced training data, and the accuracies of

lower-level classifiers suffer from the scarcity of positive training examples and from

20In the Java implementation of HR-SVM, each attribute value is treated as “double” (8 bytes).
Therefore, at least 6.5 GB of memory in the 32-bit system are needed to handle D18. On the other
hand, Clus-HMC treats each value as an “integer” (4 bytes), thus needing less memory space (3.2
GB).

www.manaraa.com

129

the propagated errors. As we go down the hierarchy, the impact of these factors

increases and the performance of the lower-level classifiers declines.

Table 5.9: Expected impact of four aspects: (i) the training-set size, (ii) the number
positive examples, (iii) the degree of imbalance, and (iv) the downward-propagated
errors. “>” indicates an increase and “<” indicates a decrease.

Classes #Training #Positive Imb. Ratio Prop. Errors

Upper levels > > > <
Lower levels < < < >

Let us first take a closer look at one of the domains: D0. Figure 5.16 plots the

classification performance at the different levels. We can see that HR-SVM-ALL

outperforms H-SVM and Clus-HMC at all levels, and H-SVM always lags behind the

other two. As seen in Table 5.10, the performance at the highest level is negatively

affected by the highly imbalanced class representation. The percentage of positive

examples at this level is only 0.07%.

Even more insight is gained from Table 5.11 which gives the number of classifiers

that incorrectly label all examples as negative (which means that F1 = 0). Since

the traditional SVM suffers from imbalanced class representation, most classifiers

in H-SVM have F1 = 0. However, R-SVM was designed in a way that improves its

“reaction” to imbalanced classes, and this is why there are no classifiers with F1 = 0 in

the case of HR-SVM-ALL. On the other hand, Clus-HMC fails to recognize examples

of some classes (resulting in F1 = 0).

In all other domains (apart from D0), the F1-results were similar to those shown

in Figure 5.17 for D16. As we proceed to lower levels, F1 gradually decreases. This

is caused by the decreasing numbers of training examples (Table 5.12) and by the

www.manaraa.com

130

Figure 5.16: Comparing HR-SVM-ALL, H-SVM, and Clus-HMC at different hierar-
chical levels in D0.

Table 5.10: Statistics for D0’s hierarchical levels.
Level #Classes AvgPositive AvgTotal %AvgPositive

1 23 188.39 2,834.00 0.07
2 18 148.94 333.56 0.52
3 13 111.92 313.46 0.40
4 7 72.57 180.00 0.53
5 3 71.33 108.33 0.69

Table 5.11: The number of classifiers with F1 = 0 in D0.
Level Classes H-SVM HR-SVM-ALL Clus-HMC

1 23 14 0 4
2 18 9 0 1
3 13 5 0 2
4 7 2 0 0
5 3 2 0 0

www.manaraa.com

131

errors propagated from higher levels (Table 5.13). F1 at the fourth hierarchical level

is slightly better than that at the third level because its ratio of imbalance is lower.

Comparing the three hierarchical classification systems, we see that HR-SVM-ALL

exhibits the best classification performance, whereas H-SVM is the worst.

From the analysis in this section, we can conclude that HR-SVM-ALL handles the

imbalanced training sets especially at the upper levels of the class hierarchy better

than other systems. It also takes care of propagated errors at the lower levels resulting

in none (or few) classifiers that cannot correctly predict any positive examples (F1=0).

Figure 5.17: Comparing F1 of HR-SVM-ALL, H-SVM, and Clus-HMC at different
class hierarchical levels in D16.

Table 5.12: Statistics for D16’s hierarchical levels.
Level #Classes AvgPositive AvgTotal %AvgPositive

1 11 1093.27 9548.00 0.01
2 28 391.00 2814.82 0.21
3 41 188.22 795.83 0.34
4 34 162.68 318.71 0.56

www.manaraa.com

132

Table 5.13: The number of classifiers with F1 = 0 in D16.
Level Classes H-SVM HR-SVM-ALL Clus-HMC

1 11 5 0 0
2 28 11 2 0
3 41 17 3 9
4 34 9 2 4

5.5 Conclusion

We proposed HR-SVM, a new top-down technique for induction of multi-label classi-

fiers in domains with hierarchically organized classes. In designing it, we followed the

common strategy to induce a separate binary classifier for each class in the hierarchy,

and to employ higher-level classifiers when creating the training sets for the induction

of lower-level classifiers. The paper described the system, and then reported experi-

ments illustrating its performance as well as diverse aspects of its overall behavior.

Top-down approaches often suffer from two issues: imbalanced class representation

and top-down error propagation. HR-SVM addresses them explicitly by 4 proposed

concepts: (i) exclusive-parent training sets (EPT), (ii) attribute-selection module

(LFS), (iii) a mechanism to correct false positives (FPC), and (iv) the correction

of the majority-class bias. The first three are data pre-processing techniques that

help generate smaller and not-so-imbalanced training sets, “enriched” by examples

misclassified by parent classifiers. The last module, R-SVM, seeks to induce unbiased

SVM-hyperplanes.

Importantly, we argue that, in hierarchical classification, the usual metrics for

performance evaluation (precision, recall, and F1) are not ideally suited. By way of

rectification, we introduced a new measure, “example-label based macro-averaging,”

www.manaraa.com

133

that uses the harmonic mean of macro-averaging performances in two dimensions, per

example and per class.

We applied our system to eight real-world domains from the the field of gene-

function prediction of three organisms: S. cerevisiae, A. thaliana, and M. musculus.

These data are available at the DTAI website. In each domain, the data were anno-

tated by their own functional hierarchy in Gene Ontology (GO), whose structure is

a directed acyclic graph (DAG).

Experimenting with these domains, we observed that our system significantly

outperformed alternative hierarchical-classification techniques such as H-SVM (a top-

down hierarchical version of SVM) and Clus-HMC (a “global” approach based on

decision trees). Especially in D0, the F1-improvement of HR-SVM over H-SVM is

about 400%, while the induction costs are much lower. The explanation is that

the module EPT creates training sets that are less imbalanced, the module R-SVM

reduces the number of false negatives (which resulted in better recall), the module

FPC decreases the number of false positives (which leads to higher precision), and

the module LFS removes irrelevant attributes (which saves a lot of induction time).

www.manaraa.com

CHAPTER 6

Conclusion and Future Work

Over the last decade or so, the need for systems capable of automated categorization

has become more and more urgent. The main reason is that, with the advent of the

world-wide web, the amount of available data is growing so fast that it is impractical—

even impossible!—to do it all manually. In the domain of gene function annotation,

the input is an unknown gene product (example), and the task is to classify it into

one of a set of predefined functions (e.g., Gene Ontology). The number of these

functional classes is large. Moreover, each gene may belong to multiple classes at the

same time (multi-label classification), and the classes are hierarchically structured

(hierarchical classification). Finally, the representation of the individual classes in

the data is heavily unbalanced. Apart from these specific complications, there are

also the more traditional ones such as uncertain and incomplete class labels (non-

mandatory leaf-node problems (NMLNP)). Seeking to address all these issues in a

single system, this dissertation offered practical solutions for “hierarchical multi-label

classification,” focusing on the general case where the generalization-specialization

relations among classes are specified in terms of a directed acyclic graph (DAG).

134

www.manaraa.com

135

6.1 Summary and Contributions

The first part of this dissertation examines the problem of classifier induction from

multi-labeled examples, as exemplified by the field of large-scale text categorization

systems. The author followed the most common approach of inducing a separate bi-

nary classifier for each class, and then employing them all in parallel. Analysis of the

low classification accuracy of these classifiers indicated that the cause of this under

performance is in the imbalanced training sets (one class outnumbering the other).

Fortunately, machine-learning literature offers enough guidance as to the general prin-

ciples of dealing with this issue. Another difficulty is presented by the impractically

high computational costs involved in applications with great many classes and great

many features.

The author’s original attempt to deal with these problems was implemented in the

framework of his “Fast Induction Tree (FDT)”(Vateekul and Kubat 2009). The ap-

plication domain targeted in this stage was decision-tree induction in large scale text

collection,the EUROVOC data. FDT reduces computational costs by “feature pre-

selection” using the information gain-ratio criteria and “data partitioning,” the latter

seeking to induce a set of decision trees from different subsets. In the classification

phase, these trees combine their outputs (data fusion) by a mechanism that favors

minority classes. Experimental results showed that FDT achieved significant savings

in CPU time; however, their classification performance (expressed in the F1-metric)

still left a lot to be desired.

Later experiments showed that although FDT outperformed SVM in terms of F1,

the performance of SVM could be improved by the use of an appropriate threshold

www.manaraa.com

136

adjustment strategy. This led us to the development of a novel multi-label classifica-

tion algorithm based on SVM. “R-SVM” (Vateekul et al. 2011) is another framework

proposed here for the needs of multi-label classification. Here is the basis: it is known

that the SVM hyperplane can be biased toward the majority class on the imbalanced

training data and needed to readjust by an appropriate translation of the SVM hy-

perplane (threshold). The work reported here uses its own novel strategy to find

the best threshold, relying on results from a group of diverse data samples. Having

experimented with six real-world benchmark domains, it was observed that R-SVM

compared favorably with the baseline SVM as well as with other earlier methods:

SVMF1
, ScutFBR, and BetaGamma.

However, more important is the second part of the dissertation that seeks to

extend the principle of R-SVM to the more difficult problem of hierarchical multi-

label classification. The resulting system is referred to as HR-SVM. In essence, it

is based on a top-down approach: inducing a separate classifier for each class, and

then proceeding to training and testing from the classifiers at upper levels all the

way down to bottom levels. Two ways to further improve the predictive power were

identified. First, the negative examples usually outnumber the positive ones, which

means that adequate methods to deal with the problem of imbalanced classes are

called for. The second issue is known as “propagated errors”: errors committed at

upper levels are propagated down the hierarchy, thus negatively affecting the overall

performance. All these issues are addressed by the four modules of HR-SVM. These

include (i) the exclusive-parent training policy, (ii) the local feature selection (LFS),

(iii) the false-positive correction, and (iv) R-SVM. The first three rely on data pre-

processing to help generate a smaller and less-imbalanced training set “enriched” by

www.manaraa.com

137

misclassified data from parent classifiers (the latter seeks to offer the opportunity

to correct previous errors). The last module, R-SVM, is responsible for inducing a

non-biased SVM hyperplane.

In hierarchical classification, classical performance measures, such as precision,

recall, and F1, are not adequate. This is why this dissertation introduced a new mea-

sure, “example-label based macro-averaging,” that uses the harmonic mean of macro-

averaging performances in two dimensions, called “per example” and“per class.” The

result is a way to measure the performance on a “per example/class” basis. As an

application domain, the author chose the field of gene function prediction, relying on

the real-world databases available at the DTAI website. Here, the task is to predict

gene functions of three organisms: S. cerevisiae, A. thaliana, and M. musculus. The

experiments were run on 8 data sets annotated by the functional hierarchy in Gene

Ontology (GO) whose structure is DAG. Each data set describes different aspects

(features) that may be from various sources.

In early experiments, the results proved that each developed concept inHR-SVM

can really improve the classification performance in terms of F1. The author then com-

pared HR-SVM to other hierarchical-classification algorithms, H-SVM (a top-down

hierarchical version of SVM) and Clus-HMC (a“big-bang” approach, also available

from the DTAI website). The results showed that HR-SVM significantly outper-

formed H-SVM on all data sets, while outperforming Clus-HMC on 6 out of 8 data

sets.

www.manaraa.com

138

6.2 Future Research Direction

Although experiments have confirmed the promise of the proposed hierarchical-learning

framework, further extensions and improvements are possible.

One is the improvement of the false-positive correction concept (FPC). The idea

is two-fold: (i) assigning more weight to propagated FP -examples that have been

misclassified by classifiers at higher levels, and (ii) combining this with the threshold

adjustment in R-SVM. Future research should show whether this would lead to the

reduction of the number of FP examples, thus resulting in improved precision and

F1.

The second possibility would be to propose a new testing mechanism of the top-

down approach. Although there are existing top-down hierarchical classification tech-

niques, it is surprising that all of them propose algorithms only at the induction phase;

thus, an invent of the testing technique is still an unexplored area. In the top-down

approach, a set of classifiers are induced and collaborated. The motivation is to

recover mistaken predictions of classifiers by considering those of their neighbor clas-

sifiers during the testing phase. Figure 6.1(a) illustrates the case in which Classifier

C1 and its subclassifiers have conflicting results, assuming that C1 makes a mistake.

In the new system, the result of C1 should be corrected to positive following that of its

subclassifiers, while the traditional testing process does not recover the mistake of C1

and even change the results of C1.1 and C1.2 to negative to preserve the hierarchical

constraint. Figure 6.1(b) demonstrates the case of Classifier C2.1 which has multiple

parents, and its parents give conflicting predictions. Assume that the disagreement

at C2 is actually a misclassification; this error must be addressed and recovered in

www.manaraa.com

139

the new testing system. Therefore, the collaboration among classifiers at the test

phase is expected to recover misclassification and improve the overall accuracy of the

system.

0

1.1 1.2

2

2.1

2.2

2.2.1 2.2.2

1

(a) The confliction between parent and child
classes.

0

1

1.1 1.2

2

2.1

2.2

2.2.1 2.2.2

(b) The confliction between two parents.

Figure 6.1: Examples of the conflict at the testing phase. The mark marks and the
“no” signs denote classifying as positive and negative respectively.

Third, the author plan to improve the algorithm to handle extremely large scale

data. Hierarchies are becoming ever more popular for the organization of text doc-

uments, particularly on the web. Very recently (this year), the 2nd edition of the

Large Scale Hierarchical Text Classification (LSHTC) Pascal Challenge21 has been

announced. In the challenge, there are three large data sets based on Wikipedia and

DMOZ as summarized in Table 6.1. They are much larger than the data sets of the

gene function prediction domain as shown in Table 5.4. With these sizes of the data,

neither any memory-resident algorithms nor any top-down hierarchical classification

systems, including HR-SVM, can process them. As for the Wikipedia Large one, the

traditional top-down system has to induce at least 325,056 classifiers which requires

21http://lshtc.iit.demokritos.gr

www.manaraa.com

140

Table 6.1: The statistics of the challenging data sets in the 2nd LSHTC. MD refers
to the maximum depth of the hierarchy.

Data set Categories Stems (Feature) Train Doc. Test Doc. MD

DMOZ 27,875 594,158 394,756 104,263 5
Wikipedia Small 36,504 643,328 456,886 81,262 10
Wikipedia Large 325,056 1,766,163 2,365,436 452,167 14

almost the whole year spent for the total induction time, assuming one minute per

classifier. Thus, it is challenging to improve HR-SVM to handle these data. One

possible approach is to reduce the number of classes by employing the clustering

techniques. Another solution is to run the program in the parallel or distributed

system.

Another direction for future research is to implement an incremental version of

HR-SVM. The amount of digital information has been exponentially growing. For

instance, due to the wealth of bimolecular technology, several descriptions of genes are

being discovered every day, and the number of new webpages is drastically growing.

Unfortunately, the reconstruction of the whole classifier seems to be impractical. The

only solution left is to partially update the model.

In conclusion, there are four possible research directions of the developed hierar-

chical system: (i) an improvement of the training process on the FPC concept, (ii)

a self-error-corrected testing process, (iii) a solution to handle the extremely large

scale data, and (iv) the incremental learning concept. All of these directions show

that the work in this dissertation and this research area are active and interesting.

www.manaraa.com

APPENDIX A

Missing Value Imputation

The presence of a certain amount of missing data is inevitable in real world data sets,

including our experimental data, and it is often regarded as a difficult problem to deal

with. There are many previous works on missing data focusing on filling missing values

(Twala 2009; Pearson 2006; Nakagawa and Freckleton 2008; Allison 2001; Fielding

et al. 2008; Giardina et al. 2005; Winkler 2003). However, most methods require data

to follow some assumptions. Thus, one would expect that when assumptions are not

satisfied, the results on imputed data should be far different from the source data.

In this chapter, we develop a novel tree-based imputation algorithm called “Im-

putation Tree” (ITree) (Vateekul and Sarinnapakorn 2009). It first studies the pre-

dictability of missingness using all observations by constructing a binary classification

tree called “Missing Pattern Tree” (MPT). Then, missing values in each cluster or

terminal node are estimated by a regression tree of observations at that node. We

present empirical results using both synthetic and real data. Almost all experiments

show that ITree is superior to other commonly used methods in estimating missing

values. The algorithm not only produces an impressive accuracy of its imputation

comparing to the original complete data, but also provides the nature of missingness.

141

www.manaraa.com

142

The rest of the chapter is organized as follows: In Section A.1, we briefly review

the definitions of missingness types and discuss about some imputation techniques

that are used in our study. Section A.2 explains our tree-based imputation method,

ITree. Section A.3 gives the details of all experiments and Section A.4 shows the

results. Conclusion and future work are in Section A.5.

A.1 Missing Data and Imputation

A.1.1 Types of Missing Values

There is a long history of analysis of missing data in classical statistics literature

(Little and Rubin 1986; Rubin 1996) that uses the cause of missingness to classify

missing data as one of the three following types.

Missing completely at random (MCAR) happens when missing values are ran-

domly distributed across all observations. For the real example of MCAR (Page 115

(Bryman and Hardy 2009)), CESD is an index of depression and was measured at

two time points in the Los Angeles Epidemiological Catchment Area study. There

were 3047 individuals for whom CESD was measured at the first time point. In the

second interview, 2240 of the 3047 cases had their measured; thus, 807 were missing

for the second CESD measurement. For this example, the data would be MCAR

if the missing CESDs at the second time point are completely independent of the

depression level of individuals at both time points. We can verify whether missing

data is MCAR by applying Little’s MCAR test (Little 1988), based on a likelihood

ratio testing method. The test is available in many statistical softwares.

www.manaraa.com

143

Missing at random (MAR) is the condition that exists when missing values are

randomly distributed within one or more subsamples instead of the whole data set

like MCAR. Moreover, when the variable that explains the missingness is included,

the result is now MCAR. For example, respondents with lower education may be less

likely to complete the entire survey. So, the cause of missing data is due to some

other external variables, not the actual missing variable itself.

Missing not at random (MNAR) is the type of missingness that arises when missing

values are not randomly distributed across observations. The simplest form of MNAR

is that the probability of missing data is systematically related to the values that are

missing. For example, people who earn very high salary tend to hide their own

information. In contrast to the MAR situation, the cause of missing data is due to

the value of the actual missing variable itself. The probability of missing cannot be

predicted directly from other variables in the database. This missingness is considered

non-ignorable.

A.1.2 Related Works

Before outlining our proposed method, ITree, a short overview of five frequently used

missing data techniques in statistics and engineering fields is warranted. Furthermore,

these techniques can be categorized by “the number of trials to estimate missing

values” into two groups: (i) single imputation and (ii) multiple imputation.

Among five reviewed techniques, two of them are considered as the single impu-

tation. The first technique is the simple arithmetic mean. It replaces missing values

with the mean of complete data. Second, a regression tree (REG) (Breiman et al.

www.manaraa.com

144

1984) can also be used to impute missing values. A tree is built from non-missing

data through a process known as binary recursive partitioning until each node reaches

a user-specified minimum node size and becomes a terminal node. The mean at each

terminal node is taken as imputed value for missing data.

The remaining three missing data techniques in this review are categorized as the

multiple imputation. First, multiple imputation (MI) method (Allison 2000; Rubin

1987) has received a great attention during last decades. The concept of MI is to

replace each missing value with a set of plausible values that represent the uncer-

tainty about the value to impute. Second, Schneider (2001) proposed a regularized

expectation-maximization (EM) algorithm22 that integrates the conventional EM and

iterated linear regression to estimate missing values for Gaussian data. The method

is only applicable to data in which missing values are missing at random. Third, a

Bayesian Principal Component Analysis (BPCA)23 (Oba et al. 2003) uses a conven-

tional EM algorithm together with a Bayesian model to approximate the principal

axes using the concept of PCA. Experiments showed that it exhibited markedly bet-

ter estimation ability than the singular value decomposition and k-nearest neighbors

algorithm.

Although there are other existing missing data techniques such as “full information

maximum likelihood” (FIML) (Allison 1987), only those methods above are selected

in this paper for two reasons. First, one objective of this work is to estimate missing

values; thus, we selected only the methods that fill all missing values in the data set.

FIML is not chosen because it is a method to estimate the parameters and standard

22http://www.gps.caltech.edu/∼tapio/imputation/
23http://hawaii.sys.i.kyoto-u.ac.jp/∼oba/tools/BPCAFill.html

www.manaraa.com

145

errors of the model directly from the available data without missing value estimation.

Second, those chosen methods are publicly available for the sake of the reproducibility

of the experiments. REG and MI are provided in the SAS packages. BPCA and EM

are available to download at the author’s website.

A.2 The Proposed Tree-Based Approach

A.2.1 Imputation Tree

Imputation Tree (ITree) is a tree-based algorithm for missing values imputation. Ta-

ble A.1 shows the pseudo-code of ITree which is composed of two main processes.

Given a set of data, the first process of ITree is to construct a Missing Pattern Tree

(MPT), which is a binary classification tree that attempts to identify the missingness

of each observation. This may at first look like many clustering techniques, such as

K-means clustering, that are used to impute missing values. However, MPT has an

advantage over clustering techniques since it uses information of every single observa-

tion whereas clustering techniques ignore any incomplete observations. Considering

a particular attribute with missing values, MPT uses missing information of each

observation to generate a binary class variable where “0” represents a record having

missing value and “1” represents a record with no missing value. As seen from the

pseudo-code in Table A.1, we generate an additional class attribute and use a classi-

fication tree algorithm to construct the initial MPT. The MPT captures the missing

pattern by identifying a set of covariations that help categorize missingness.

www.manaraa.com

146

Table A.1: The pseudocode for generating missing data.

main(data, missing att)

1 ⊲ 1) Construct missing pattern tree (MPT)
2 ⊲ 1.1 Generate initial MPT
3 for record in data

4 do if (data(missing att))ismissing

5 else class = 1;
6 mpt← classification tree(data, class);
7
8 ⊲ 1.2 Prune MPT at confidence 95%
9 pruning(mpt, missing att, 0.05);

10
11 ⊲ 2) Construct a regression tree
12 for terminal node (tnode) in mpt

13 do

14 ⊲ tnode.data are observations belong to tnode

15 reg ← regression tree(tnode.data);
16
17 ⊲ impute missing value
18 eval(reg, tnode.data);

While MPT gives us an insight into the nature of missing data, it tends to overfit

the missing value model. For the imputation purpose, we will avoid overfitting of

the MPT by reducing redundant leaf nodes, a pruning process. Each pair of terminal

nodes from the same parent must from two different populations. To ensure that each

terminal node in MPT represents a different population. We, therefore, propose a

pruning procedure based on a two-sample t-test. The procedure consists of conducting

an independent two-sample t-test on the observations of the missing variable at each

pair of terminal nodes having the same parent. If the result of a t-test indicates the

observations in the two terminal nodes are from the same population (i.e., having the

same mean), then we remove the two terminal nodes and declare their parent node

a terminal instead. Otherwise, we leave the two terminal nodes alone. We continue

www.manaraa.com

147

checking every pair of terminals until all unnecessary splits are discarded. In our

experiments, the significance level of t-test for each pair of terminal nodes is set to

be 0.05.

The second process of ITree is to estimate missing values using regression tree

analysis, which is an approach suitable for modeling nonlinear relationship in data.

At each terminal node in the MPT, we construct a regression tree from all complete

observations at that node in order to predict the value of missing variable. The average

of observations at the terminal node of the regression tree provides an estimate of

missing value for any observations landing at that terminal.

A.2.2 Schema of Missing Data Treatment

A framework based on the proposed ITree for handling research data with missing

values is presented in Figure A.1. The system analyzes the results from each process

of ITree and provides two optional modules,“Missing Pattern Type Inference” and

“Auxiliary Variables Suggestion” engines, as shown in the dashed-boxes.

In the first module, the inference engine determines the type of missingness

(MCAR, MAR, or MNAR) by inferring from the process of constructing the MPT

whether it can discover a missing pattern. It considers the missing type by checking

if an MPT can be built or not. On the one hand, if the system can generate an MPT,

the inference engine will confidently conclude that the missing type is MAR because

a missing pattern can be identified, and each node in MPT is a cause of missing. On

the other hand, the inference engine deduces that the missing type is either MCAR

or MNAR when an MPT cannot be constructed, or it can be created but its perfor-

www.manaraa.com

148

y= a+bx+ e y=a+bx + e0 1

Generate missing
pattern tree (MPT)

For each terminal node,
generate regression trees

Imputed

research data

Research
data with

missing values
Imputation
(Output)

1. Missing pattern
type inference

2. Auxiliary variables
suggestion

Domain
knowledge

Relevant
variables

Input

1

1

Recursively generate
new data set

Figure A.1: The ITree based framework.

mance, e.g., recall and F1, is unacceptably poor. We can distinguish MCAR from

MNAR using Little’s MCAR test.

When the system can generate regression trees with high prediction accuracy, it

means missing values can be well estimated by other variables in the database. Con-

versely, variables in the database may not provide useful information for estimating

missing values when the system cannot generate either MPT or regression trees. An

estimate of missing values that we use in this circumstance could be a simple arith-

metic mean. In our future work, we will be working on implementing the second

additional module, “Auxiliary Variables Suggestion”, where auxiliary variables refer

www.manaraa.com

149

to external variables which are in the domain knowledge database, but not originally

included in the data set. This module will suggest related auxiliary variables in do-

main knowledge that are helpful for imputation. With additional auxiliary variables,

missing values will be estimated more accurately.

It is important to note that there are two different types of trees in the proposed

system: (i) the tree to find the missing pattern (MPT) and (ii) the tree to estimate

missing values. Thus, when ITree cannot generate an MPT, it only implies the

missingness cannot be explained by other variables in the data set. However, it is

still possible to obtain a very good estimate of missing values from available data,

especially when the missing variable and other variables are highly related.

A.3 Experiments

We conduct experiments on both real and simulated data to evaluate the perfor-

mance of ITree and compare it to five selected imputation algorithms: MI, regression

tree (REG), EM, BPCA, and arithmetic mean. They were chosen because they can

estimate missing values in the database, not just the model parameter estimation,

and their softwares are publicly available. For the generation process of both MPT

and regression trees, we use CART methodology by (Breiman et al. 1984), which is

available in Matlab. For MI, SAS provides it via the command “PROC MI” where its

default setting without the option MODEL refers to the -missing value imputation24.

24http://support.sas.com/rnd/app/da/new/dami.html

www.manaraa.com

150

A.3.1 Simulated Data

We generate data sets from three scenarios: 1) normal distribution, 2) lognormal

distribution, and 3) two normal distributions having different means. All data sets

have 7 variables, X1 to X7, where X1 to X5 are linearly related while X6 and X7 are

independent of each other as well as independent of X1 to X5. For each experimental

setup, we repeat the experiment 5 times in order to learn the variation in the perfor-

mance measure. To investigate the effect of sample size among different imputation

techniques, we consider two sample sizes, small and large. Since this work is inspired

by research in behavioral medicine where it is rare to have a very large number of

patients or interviewees, we limit the sample size to be 1000 observations for large

and 200 for small samples.

A.3.2 Pima Indians Diabetes Database (PIMA)

PIMA is a real data set from UCI Machine Learning Repository (Asuncion and New-

man 2007) that has been used in many papers since 1990. It comprises observations

from 768 female patients of Pima Indian heritage and at least 21 years old who may

show signs of diabetes. Each patient is described by one class variable indicating

whether she is diabetic and 8 attributes including medical measurements and per-

sonal history such as age, body mass index (BMI), number of pregnancies (NP),

and triceps skin fold thickness (SF). We discard some observations because their at-

tributes have inconsistent or incorrect values, e.g., some patients have BMI equal 0.

After removal of inaccurate records, we end up with 392 complete observations for

the experiments.

www.manaraa.com

151

A.3.3 Generating Missing Data

Table A.2 shows the pseudo code, sim missing data function, used for generating

missing data of different types in a given data set. We specify the condition of being

missing (parameter qt) to be either value smaller than the first quartile or larger than

the third quartile of the conditioning attribute (parameter cond att). This implies

we will have roughly no more than 25 percent of data missing. The parameter prob is

the probability of missing for those observations meeting the quartile criterion. When

the missing condition is satisfied under the specified probability, the value of missing

attribute (parameter missing att) is replaced by a pre-defined missing value (NaN).

Table A.2: The pseudocode of ITree

sim missing data(data, type, missing att, cond att, prob, qt)

1 prob data← assign rand(data); ⊲ range [0,1]
2 if (type == MNAR)
3 then cond att = missint att;
4 sort(data, cond att);
5
6 if ((type == MAR)or(type == MNAR))
7 then for record in data

8 do if (prob data < prob)
9 then data(missing att) = NaN ;

10 else if (prob data < prob)
11 then data(missing att) = NaN ;

If the type of missingness is MCAR, missing values do not depend on any at-

tributes, and so conditioning parameters cond att and qt need not be specified. We

experiment with three different values for missing probability: 0.05, 0.15, and 0.25.

To generate MAR missing data, we select a conditioning attribute and its condi-

tioning value, the first or the third quartile depending on the characteristic of the

www.manaraa.com

152

data. The probability of being missing is varied from 0.6 to 1.0 at 0.1 increment. For

MNAR missing data, none of the variables in the data set provide useful information

in estimating missing values. We assume, for simplicity, that the missing variable and

the conditioning variable are the same one, and vary the probability of missing from

0.6 to 1.0 at 0.1 increment.

We investigate all three types of missing values for every data set. In total there

are four sets of experiments with different characteristics as depicted in Table A.3.

For normal and lognormal data, we consider two cases: when missing variable (X3)

is related to other variables in the data set and when missing variable (X6) is inde-

pendent of other variables. How well an imputation method performs is measured

by the deviation of an imputed value from the actual one (in the complete data set).

The comparison among imputation methods will be based on the root mean square

error (RMSE) of the imputation averaged over 5-fold cross validation.

Table A.3: Summary of four experiments
Experiments Data Miss Types of missing values

1 2POP X6 1) mcar 2) marX7 3) mnar

2 NORM
X3 1) mcar 2) marX1 3) mnar
X6 1) mcar 2) marX7 3) mnar

3 LOGN
X3 1) mcar 2) marX1 3) mnar
X6 1) mcar 2) marX7 3) mnar

4 PIMA
BMI 1) mcar 2) marSF 3) mnar
NP 1) mcar 2) marAge 3) mnar

www.manaraa.com

153

A.4 Results and Discussions

The experimental results are analyzed statistically using ANOVA and followed by

Bonferroni multiple comparisons in order to rank the performance of different im-

putation techniques. Many experiments lead to the same conclusion, so only some

selected results are presented.

The first set of experiments deals with data from 2 populations. The results

shown in Figure A.2(a), (b), and (c) indicate that ITree performs the best among

all methods. It is not surprising that most other methods, MI, EM, BPCA, and

mean, give undesirable results since they estimate missing values using information of

two different distributions treated as one, thus producing erroneous imputed values.

On the contrary, tree-based methods like ITree and REG estimate missing values

separately for each population at the terminal nodes.

ITree and REG perform comparably most of the time. The exception is the MNAR

case where ITree is much better, particularly when the probability of missing is 1.0

(Figure A.2(c)). In such a case, REG cannot generate any regression trees because

one population has too few complete observations. Hence, REG simply produces an

arithmetic mean of 2-population data as an estimate of missing values. In contrast,

ITree clusters data nicely into 2 populations in the MPT and it does not attempt to

estimate the missing value when there is obviously insufficient data.

In the second set of experiments we worked with normal distributed data (NORM).

When the missing variable X3 is dependent on other variables, it is possible to use

information from other variables to help in imputation. For all types of missing, MI

is far better than other methods and arithmetic mean is the worst one. Figure A.3(a)

www.manaraa.com

154

and (b) show examples of results for MAR and MNAR cases. While ITree is not

the best algorithm, it is usually one of the top three performances. When the miss-

ing variable X6 is independent of other variables, the results are different, however.

BPCA is the worst performer here. It is interesting to see in Figure A.3(c) that MI

cannot outperform single imputation algorithms including arithmetic mean because

the estimation of X6 by MI involves other variables, X1-X5, while X6 is independent

variable, so its value cannot be estimated by others. Also, the results show that ITree

wins MI in every case, though not significantly.

The third set of experiments is conducted on a lognormal distribution (LOGN)

giving some result examples in Figure A.4(a), (b), and (c). ITree and BPCA are

not significantly different for almost every case in the study, and both tend to be

more accurate in estimating missing values compared to other methods. It should

be noted that a sophisticated method like MI is inferior to others when data is not

normal distributed, which implies that MI does not tolerate a departure from its

distributional assumption. Although there are some improvement of MI for the non-

normality assumption, they are not commonly used and provided by SAS yet; we,

therefore, decided not to include them in the experiment.

The last set of experiments is carried out on real data, PIMA. One of the ex-

periments uses “number of pregnancies” (NP) as a missing variable. NP has a weak

correlation with other variables. We see from Figure A.5(a) that in the MAR case

when the conditioning variable is age, ITree almost always gives the most accurate im-

puted value for NP. It is only when the probability of missing is 1 (which means every

observation that meets the conditioning variable criterion has NP missing) that ITree

loses to MI and EM algorithms. In another experiment, “body mass index” (BMI) is

www.manaraa.com

155

the missing variable. BMI is linearly related to “skin fold” (SF). Figure A.5(b) shows

that MI and EM are the two algorithms that stand out for having low RMSE. ITree

comes close to these two; it is not significantly different from them in many cases.

In all, we see that there is no single method that is always the best for imputation.

ITree performs reasonably well for all the scenarios in our study, and often it is one

of our top choices.

A.5 Conclusion

We have proposed a new imputation method, Imputation Tree (ITree), to handle

data with missing values. ITree is a tree-based algorithm that initially generates a

missing pattern tree (MPT) to help us understand the nature of missingness, and

then further provides regression trees that produce estimates for missing values. The

advantage of ITree over other imputation methods is that it tells us if the missingness

of a variable is influenced by the existence of other variables in the data set. It gives

us the knowledge of missingness type by analyzing the data, rather than assuming

like other methods do. Thus, the ways to handle missing data can be appropriately

provided to a specific type of missing data.

In general, ITree performs satisfactorily in terms of having small imputation error

comparing to the original complete data. It usually is one among the most precise

imputation algorithms in our experiments, and it works best with 2 populations and

lognormal data. The nonparametric nature of ITree makes it flexible and robust to

be used without distributional assumption issue. However when the assumptions are

met such as in the case of MI with normal data, ITree often cannot compete with MI.

www.manaraa.com

156

In this work we only discuss the imputation of one missing variable. ITree deals

with one missing variable each time, because the causes of missingness of different

variables are not the same. Therefore when there are multiple missing variables, each

variable will be treated separately. ITree will be applied to each individual missing

variable, one after another. The order of missing variables to be imputed could be

important as mentioned in (Conversano and Siciliano 2003), and this issue will be

covered in our future work. We will also extend the method to handle the imputation

of missing categorical data.

www.manaraa.com

157

(a) 2POP missingX6 mcar (b) 2POP missingX6 marX7

(c) 2POP missingX6 mnar (d) Label

Figure A.2: Average RMSE of six imputation methods at different levels of missing
probability on two population data (2POP). X-axis is the probability of missing and
Y-axis is the average RMSE. The number above each bar provides ranking of the
performance.

www.manaraa.com

158

(a) NORM missingX3 marX1 (b) NORM missingX3 mnar

(c) NORM missingX6 marX7 (d) Label

Figure A.3: Average RMSE of six imputation methods at different levels of missing
probability on normal distribution data (NORM). X-axis is the probability of missing
and Y-axis is the average RMSE. The number above each bar provides ranking of the
performance.

www.manaraa.com

159

(a) LOGN missingX3 marX1 (b) LOGN missingX3 mnar

(c) LOGN missingX6 marX7 (d) Label

Figure A.4: Average RMSE of six imputation methods at different levels of missing
probability on lognormal distribution data (LOGN). X-axis is the probability of
missing and Y-axis is the average RMSE. The number above each bar provides ranking
of the performance.

www.manaraa.com

160

(a) PIMA missingNP marAge

(b) PIMA missingBMI marSF (c) Label

Figure A.5: Average RMSE of six imputation methods at different levels of missing
probability on Pima Indians Diabetes data (PIMA). X-axis is the probability of
missing and Y-axis is the average RMSE. The number above each bar provides ranking
of the performance.

www.manaraa.com

APPENDIX B

More Experimental Results of HR-SVM

Previously in Section 5.4, all experiments were evaluated by the proposed criteria,

“Example-Label based macro-averaging” (ELb) – with its own version of precision

(ELbPr), recall (ELbRe), and F1 (ELbF1). Some may argue that the success of the

developed hierarchical classification framework, HR-SVM, can be mistaken by the

evaluation of the proposed criteria. Thus, this appendix aims to show the experi-

mental results in Section 5.4 evaluated by other existing measures in this domain: (i)

“Example based criteria” (Eb) – or the hierarchical criteria in Section 3.4, and (ii)

“Label based criteria” (Lb) – or the multi-label classification criteria in Section 2.5.2.

As expected, the evaluations of those existing criteria are similar to the ELb-

results in Section 5.4.

• Like in Section 5.4.1, the F1 of the developed system, HR-SVM-ALL, compares

favorably with that of other techniques, H-SVM and Clus-HMC, as shown in

Figure B.1. It surpassed H-SVM on all domains, except D15 and D17 that the

Lb-results of both systems are comparable. Comparing to Clus-HMC, it won

on most cases out of 8 data sets. It lost only on one data set (D17) in terms of

the Eb-measure and two data sets (D17 and D18) in terms of the Lb-measure.

161

www.manaraa.com

162

• In the next step, similar to Section 5.4.2, each proposed concept has been investi-

gated on how much it contributes to the system performance. First, the R-SVM

module positively affected the system performance in terms of F1 and recall as

illustrated in Figure B.2 and Figure B.3 respectively. Then, by applying the

FPC concept, F1 and precision were significantly improved as demonstrated in

Figure B.4 and Figure B.5 respectively. Finally the LFS concept was successful

in increasing F1 though precision on most data sets as shown in Figure B.6 and

Figure B.7 consecutively.

• In the end, Section 5.4.3 demonstrated performance at different hierarchical

levels of HR-SVM-ALL, H-SVM, and Clus-HMC. Since each class-level was

independently evaluated, the label-based metrics (Lb) were chosen instead of

the ELb-metrics in Section 5.4.3. Thus, there is no need to show the results of

different criteria here. Previously, only the class-level results of D0 and D16

were reported; for the sake of completeness, the results of the remaining data

sets are shown here in Figure B.8 – Figure B.13.

Moreover, the comparison of those existing criteria (the Eb-measure and the Lb-

measure) are also summarized as follows:

• Although those existing criteria mostly give the same conclusion, the label based

results are always less than the example based results. The Eb-criteria refers

to an average of the classification performance per each example along the pre-

dicted paths in the class hierarchy, while the Lb-criteria represent an average

of the performance per each label (class) along the predicted examples in the

data set. Table B.1 is an example of the prediction in the matrix form where

www.manaraa.com

163

the Eb-criteria and the Lb-criteria compute across the row and column of the

matrix respectively. Since the number of classes is usually smaller than the

number of examples, the Eb-calculation along “class paths” (across the row) is

easier to be satisfied and obtains higher values than the Lb-calculation along

“all examples” (across the column).

Table B.1: An example of the prediction in the matrix form. Assume that there are
8 classes in the hierarchy and 10000 examples in the data set.

C1 C2 C3 C4 C5 C6 C7 C8
x1 1 1 0 0 0 0 0 0
x2 0 0 0 1 0 1 1 0

...
x10000 1 1 0 0 0 0 0 0

• The results of those existing criteria can sometimes be opposite as shown in

Figure B.4; this, therefore, shows the need of the introduced ELb-measure.

On D14, EbF1 of HR-SVM-FPC was higher than that of HR-SVM, while the

result was opposite in terms of the LbF1. In the domain of hierarchical multi-

label classification, the classifier showing promising results on both measures is

preferred. Thus, the presented evaluation measure, which is a harmonic mean

of those measures, can give a compromised judgement that F1 of HR-SVM-FPC

was greater than that of HR-SVM on D14 as shown in Figure 5.12.

In conclusion, the results evaluated by the existing criteria in this appendix agreed

to those measured by the proposed criteria in Section 5.4. This can prove the success

of the proposed system, HR-SVM. Moreover, the need of the presented performance

criteria was shown when the contradiction of those existing evaluation appeared.

www.manaraa.com

164

(a) Example based F1 (EbF1)

(b) Label based F1 (LbF1)

Figure B.1: Comparing the performance (along F1) of H-SVM, HR-SVM-ALL, and
Clus-HMC. The integers over each of the vertical bars give the ranks as obtained by
the ANOVA methodology followed by Bonferroni multiple comparisons.

www.manaraa.com

165

(a) Example based F1 (EbF1)

(b) Label based F1 (LbF1)

Figure B.2: The effect of R-SVM: Comparing HR-SVM with H-SVM in terms of
F1. The stars above some of the bars indicate significant improvements according to
t-tests (0.05 level).

www.manaraa.com

166

(a) Example based recall (EbRe)

(b) Label based recall (LbRe)

Figure B.3: The effect of R-SVM: Comparing HR-SVM with H-SVM in terms of
recall. The stars above some of the bars indicate significant improvements according
to t-tests (0.05 level).

www.manaraa.com

167

(a) Example based F1 (EbF1)

(b) Label based F1 (LbF1)

Figure B.4: The effect of FPC: Comparing HR-SVM-FPC with HR-SVM in terms of
F1. The stars above some of the bars indicate significant improvements according to
t-tests (0.05 level).

www.manaraa.com

168

(a) Example based precision (EbPr)

(b) Label based precision (LbPr)

Figure B.5: The effect of FPC: Comparing HR-SVM-FPC with HR-SVM in terms
of precision. The stars above some of the bars indicate significant improvements
according to t-tests (0.05 level).

www.manaraa.com

169

(a) Example based F1 (EbF1)

(b) Label based F1 (EbF1)

Figure B.6: The effect of LFS: Comparing HR-SVM-ALL with HR-SVM-FPC in
terms of F1. The stars and circles above some of the bars indicate significant im-
provements and declines according to t-tests (0.05 level).

www.manaraa.com

170

(a) Example based precision (EbPr)

(b) Label based precision (EbPr)

Figure B.7: The effect of LFS: Comparing HR-SVM-ALL with HR-SVM-FPC in
terms of precision. The stars and circles above some of the bars indicate significant
improvements and decline according to t-tests (0.05 level).

www.manaraa.com

171

Figure B.8: Comparing HR-SVM-ALL, H-SVM, and Clus-HMC at different hierar-
chical levels in D13.

Figure B.9: Comparing HR-SVM-ALL, H-SVM, and Clus-HMC at different hierar-
chical levels in D14.

www.manaraa.com

172

Figure B.10: Comparing HR-SVM-ALL, H-SVM, and Clus-HMC at different hierar-
chical levels in D15.

Figure B.11: Comparing HR-SVM-ALL, H-SVM, and Clus-HMC at different hierar-
chical levels in D17.

www.manaraa.com

173

Figure B.12: Comparing HR-SVM-ALL, H-SVM, and Clus-HMC at different hierar-
chical levels in D18.

Figure B.13: Comparing HR-SVM-ALL, H-SVM, and Clus-HMC at different hierar-
chical levels in D19.

www.manaraa.com

Bibliography

Agrawal, R., Imieliski, T., and Swami, A. 1993. Mining association rules
between sets of items in large databases. In SIGMOD ’93: Proceedings of
the 1993 ACM SIGMOD international conference on Management of data.
Vol. 22. ACM, 207–216.

Agrawal, R. and Srikant, R. 1994. Fast algorithms for mining association
rules. In Proceedings of the 20th International Conference on Very Large
Databases. 487–499.

Allison, P. D. 1987. Full information estimation in the presence of incomplete
data. Sociological Methodology 17, 71–103.

Allison, P. D. 2000. Multiple imputation for missing data: A cautionary tale.
Sociological Methods Research 28, 3, 301–309.

Allison, P. D. 2001. Missing Data. Sage Publications, Thousand Oaks, CA.

Ashburner, M., Ball, C., Blake, J., Botstein, D., Butler, H.,
Cherry, M., Davis, A., Dolinski, K., Dwight, S., Eppig, J., Harris,

M., Hill, D., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese,

J., Richardson, J., Ringwald, M., Rubin, G., and Sherlock, G.

2000. Gene ontology: tool for the unification of biology. Nature Genet-
ics 25, 1, 25–29.

Asuncion, A. and Newman, D. 2007. Uci machine learning repository.

Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N.,
Weissig, H., Shindyalov, I., and Bourne, P. 2000. The protein data
bank. Nucleic Acids Research 28, 1, 235–242.

Blockeel, H., De Raedt, L., and Ramon, J. 1998. Top-down induction
of clustering trees. In Proceedings of the 15th International Conference on
Machine Learning, J. Shavlik, Ed. Morgan Kaufmann, 55–63.

Blockeel, H., Schietgat, L., Struyf, J., Dzeroski, S., and Clare, A.

2006. Decision trees for hierarchical multilabel classification: A case study
in functional genomics. Knowledge Discovery in Databases: PKDD 2006,
Proceedings 4213, 18–29.

174

www.manaraa.com

175

Boutell, M. R., Luo, J., Shen, X., and Brown, C. M. 2004a. Learning
multi-label scene classification. Pattern Recognition 37, 9, 1757–1771.

Boutell, M. R., Luo, J., Shen, X., and Brown, C. M. 2004b. Learning
multi-label scene classification. Pattern Recognition 37, 9, 1757 – 1771.

Brank, J., Grobelnik, M., Milic-Frayling, N., and Mladenic, D.

2003. Training text classifiers with svm on very few positive examples. Tech.
rep., Microsoft Research.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. 1984.
Classification and Regression Trees. Chapman & Hall, New York, NY.

Bryman, A. and Hardy, M. A. 2009. Handbook of Data Analysis. SAGE
Publications Ltd, London/GB.

Chandra, B., Mazumdar, S., Arena, V., and Parimi, N. 2002. Ele-
gant decision tree algorithm for classification in data mining. In WISEW
’02: Proceedings of the Third International Conference on Web Information
Systems Engineering (Workshops) - (WISEw’02). IEEE Computer Society,
Washington, DC, USA, 160.

Chandra, B. and Varghese, P. P. 2008. Fuzzy sliq decision tree algorithm.
Systems, Man, and Cybernetics, Part B, IEEE Transactions on 38, 5, 1294–
1301.

Chang, C.-C. and Lin, C.-J. 2011. LIBSVM: A library for
support vector machines. ACM Transactions on Intelligent
Systems and Technology 2, 27:1–27:27. Software available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

Chernick, M. R. 2008. Bootstrap methods : a guide for practitioners and
researchers, 2nd ed. Wiley-Interscience, Hoboken, N.J.

Clare, A., Karwath, A., Ougham, H., and King, R. D. 2006. Functional
bioinformatics for arabidopsis thaliana. Bioinformatics 22 (9), 1130–1136.

Clare, A. and King, R. D. 2001. Knowledge discovery in multi-label phe-
notype data. In Proceedings of the 5th European Conference on Principles
of Data Mining and Knowledge Discovery (PKDD’01). Freiburg, Germany.

Clare, A. and King, R. D. 2003. Predicting gene function in saccharomyces
cerevisiae. Bioinformatics 19, 42–49.

Colas, F. and Brazdil, P. 2006. Comparison of svm and some older classifi-
cation algorithms in text classification tasks. Artificial Intelligence in Theory
and Practice, 169–178.

Conversano, C. and Siciliano, R. 2003. Claudio conversano and roberta
siciliano. In Interface 2003: Security and Infrastructure Protection.

www.manaraa.com

176

Costa, E. P., Lorena, A. C., Carvalho, and Freitas, A. A. 2007.
A review of performance evaluation measures for hierarchical classifiers. In
2007 AAAI Workshop, Vancouver. AAAI Press.

Delwiche, L. D. and Slaughter, S. J. 2008. The little SAS book : a primer ,
Fourth ed. SAS Press.

Dendamrongvit, S., Vateekul, P., and Kubat, M. 2011. Irrelevant at-
tributes and imbalanced classes in multi-label text-categorization domains.
Intelligent Data Analysis .

Diplaris, S., Tsoumakas, G., Mitkas, P. A., and Vlahavas, I. P. 2005.
Protein classification with multiple algorithms. In Panhellenic Conference
on Informatics. 448–456.

Dong, G., Zhang, X., Wong, L., and Li, J. 1999. Caep: Classification by
aggregating emerging patterns. In Proceedings of the Second International
Conference on Discovery Science (DS’99). 737–737.

Dumais, S. and Chen, H. 2000. Hierarchical classification of web content.
In Proceedings of the 23rd annual international ACM SIGIR conference on
Research and development in information retrieval. ACM, 256–263.

Efron, B. 1979. Bootstrap methods: Another look at the jackknife. The An-
nals of Statistics 7, 1, 1–26.

Efron, B. 1983. Estimating the error rate of a prediction rule: Improvement
on cross-validation. Journal of the American Statistical Association 78, 382,
316–331.

Eisner, R., Poulin, B., Szafron, D., Lu, P., and Greiner, R. 2005.
Improving protein function prediction using the hierarchical structure of
the gene ontology. In Proceedings of IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB).

Elisseeff, A. and Weston, J. 2001. A kernel method for multi-labelled
classification. In Advances in Neural Information Processing Systems 14.
MIT Press, 681–687.

Fagni, T. and Sebastiani, F. 2007. On the selection of negative examples
for hierarchical text categorization. In Proceedings of the 3rd language tech-
nology conference. 24–28.

Fagni, T. and Sebastiani, F. 2010. Selecting negative examples for hierar-
chical text classification: An experimental comparison. Journal of the Amer-
ican Society for Information Science and Technology 61, 11, 2256–2265.

Feldman, R. and Sanger, J. 2007. The Text Mining Handbook: Advanced
Approaches in Analyzing Unstructured Data. Cambridge University Press,
New York, NY, 410.

www.manaraa.com

177

Fielding, S., Fayers, P. M., McDonald, A., McPherson, G., and

Campbell, M. K. 2008. Simple imputation methods were inadequate for
missing not at random (MNAR) quality of life data. Vol. 6.

Gao, S., Wu, W., Lee, C.-H., and Chua, T.-S. 2004. A MFoM learning ap-
proach to robust multiclass multi-label text categorization. In Proceedings of
the Twenty-first International Conference on Machine Learning (ICML’04).
329–336.

Giardina, M., Huo, Y., Azuaje, F., McCullagh, P., and Harper,

R. 2005. A missing data estimation analysis in type ii diabetes databases.
In Proceedings of the 18th IEEE Symposium on Computer-Based Medical
Systems. IEEE Computer Society, 347–352.

Goertzel, B. and Venuto, J. 2006. Accurate svm text classification for
highly skewed data using threshold tuning and query-expansion-based fea-
ture selection. In IJCNN’06: International Joint Conference on Neural Net-
works 2006. 1220–1225.

Guyon, I. and Elisseeff, A. 2003. An introduction to variable and feature
selection. Journal of Machine Learning Research 3, 1157–1182.

Harris, C. J. 2004. The gene ontology (go) database and informatics resource
– gene ontology consortium 32 (supplement 1): 258 – nucleic acids research.
Nucleic Acids Res. 1, 32, D258–D261.

Hersh, W., Buckley, C., Leone, T. J., and Hickam, D. 1994.
OHSUMED: an interactive retrieval evaluation and new large test collec-
tion for research. In SIGIR ’94: Proceedings of the 17th annual interna-
tional ACM SIGIR conference on Research and development in information
retrieval. Springer-Verlag New York, Inc., 192–201.

Imam, T., Ting, K., and Kamruzzaman, J. 2006. z-SVM: An svm for
improved classification of imbalanced data. AI 2006: Advances in Artificial
Intelligence, 264–273.

Jensen, L. J., Gupta, R., Blom, N., Devos, D., Tamames, J., Kesmir,

C., Nielsen, H., Staerfeldt, H. H., Rapacki, K., Workman,

C., Andersen, C. A., Knudsen, S., Krogh, A., Valencia, A.,
and Brunak, S. 2002. Prediction of human protein function from post-
translational modifications and localization features. Journal of Molecular
Biology (JMB) 319, 5, 1257–1265.

Joachims, T. 1998. Text categorization with support vector machines: learn-
ing with many relevant features. In The European Conference on Machine
Learning (ECML’98). Springer Verlag, Heidelberg, DE, Chemnitz, DE, 137–
142.

www.manaraa.com

178

Joachims, T. 1999. Making large-scale support vector machine learning prac-
tical. In Advances in kernel methods: support vector learning. MIT Press,
Cambridge, MA, USA, 169–184.

Joachims, T. 2003. Learning to Classify Text Using Support Vector Machines.
Kluwer Academic Publishers, Norwell, MA.

Joachims, T. 2006. Training linear svms in linear time. In Proceedings of the
ACM Conference on Knowledge Discovery and Data Mining (KDD). ACM.

Kang, F., Jin, R., and Sukthankar, R. 2006. Correlated label propaga-
tion with application to multi-label learning. In IEEE Computer Vision and
Pattern Recognition (CVPR) 2006. 1719–1726.

Kell, D. B. and King, R. D. 2000. On the optimization of classes for the as-
signment of unidentified reading frames in functional genomics programmes:
the need for machine learning. Trends Biotechnol 18, 3, 93–98.

Kiritchenko, S., Matwin, S., and Famili, A. F. 2005. Functional annota-
tion of genes using hierarchical text categorization. In in Proceedings of the
BioLINK SIG: Linking Literature, Information and Knowledge for Biology
(held at ISMB-05).

Koller, D. and Sahami, M. 1997. Hierarchically classifying documents using
very few words. In Proceedings of ICML-97, 14th International Conference
on Machine Learning, D. Fisher, Ed. Morgan Kaufmann Publishers, San
Francisco, US, 170–178.

Kubat, M. and Matwin, S. 1997. Addressing the curse of imbalanced train-
ing sets: One-sided selection. In Proceedings of the Fourteenth International
Conference on Machine Learning. Morgan Kaufmann, 179–186.

Kwok, J. T. 1998. Automated text categorization using support vector ma-
chine. In Proceedings of the Fifth International Conference on Neural Infor-
mation Processing (ICONIP’98). Kitakyushu, JP, 347–351.

Lauser, B. and Hotho, A. 2003. Automatic multi-label subject indexing in
a multilingual environment. In ECDL. 140–151.

Lewis, D. D., Yang, Y., Rose, T. G., and Li, F. 2004a. Rcv1: A new
benchmark collection for text categorization research. Journal of Machine
Learning Research 5, 361–397.

Lewis, D. D., Yang, Y., Rose, T. G., and Li, F. 2004b. RCV1: A new
benchmark collection for text categorization research. Journal of Machine
Learning Research 5, 361–397.

Li, B., Ma, L., Hu, J., and Hirasawa, K. 2008. Gene classification using
an improved svm classifier with soft decision boundary. In SICE Annual
Conference, 2008. SICE Annual Conference, 2008 , 2476–2480.

www.manaraa.com

179

Li, W., Han, J., and Pei, J. 2001. Cmar: accurate and efficient classification
based on multiple class-association rules. In Data Mining, 2001. ICDM 2001,
Proceedings IEEE International Conference on. 369–376.

Little, R. 1988. A test of missing completely at random for multivariate data
with missing values. Journal of the American Statistical Association 83, 404,
1198–1202.

Little, R. J. A. and Rubin, D. B. 1986. Statistical analysis with missing
data. John Wiley & Sons, Inc.

Liu, B., Hsu, W., and Ma, Y. 1998. Integrating classification and association
rule mining. In Knowledge Discovery and Data Mining. 80–86.

McCallum, A., Rosenfeld, R., Mitchell, T. M., and Ng, A. Y. 1998.
Improving text classification by shrinkage in a hierarchy of classes. In Pro-
ceedings of the Fifteenth International Conference on Machine Learning.
Morgan Kaufmann Publishers Inc., 359–367.

Mehta, M., Agrawal, R., and Rissanen, J. 1996. Sliq: A fast scalable
classifier for data mining. In EDBT ’96: Proceedings of the 5th Interna-
tional Conference on Extending Database Technology. Springer-Verlag, Lon-
don, UK, 18–32.

Mewes, H. W., Albermann, K., Heumann, K., Liebl, S., and Pfeiffer,

F. 1997. Mips: a database for protein sequences, homology data and yeast
genome information. Nucleic Acids Res 25, 1, 28–30.

Mewes, H. W., Frishman, D., Gildener, U., Mannhaupt, G., Mayer,

K., Mokrejs, M., Morgenstern, B., Minsterktter, M., Rudd, S.,
and Weil, B. 2002. Mips: a database for genomes and protein sequences.
Nucleic Acids Res 30, 31–34.

Mladenie, D. 1998. Machine learning on non-homogeneous, distributed text
data. Ph.D. thesis, University of Ljubljana, Faculty of Computer and Infor-
mation Science.

Nakagawa, S. and Freckleton, R. 2008. Missing inaction: the dangers of
ignoring missing data. Trends in Ecology & Evolution 23, 11, 592–596.

Nguyen, C., Dung, T., and Cao, T. 2005. Text classification for dag-
structured categories. In Advances in Knowledge Discovery and Data Min-
ing, T. Ho, D. Cheung, and H. Liu, Eds. Lecture Notes in Computer Science,
vol. 3518. Springer Berlin / Heidelberg, 97–114.

Oba, S., Sato, M.-A., Takemasa, I., Monden, M., Matsubara, K.-I.,
and Ishii, S. 2003. A bayesian missing value estimation method for gene
expression profile data. Bioinformatics 19, 16, 2088–2096.

Pearson, R. K. 2006. The problem of disguised missing data. SIGKDD Ex-
plorations 8, 1, 83–92.

www.manaraa.com

180

Peter, C. Z., Jansen, P., Stoica, E., Grot, N., and Evans, D. A. 1998.
Threshold calibration in clarit adaptive filtering. In Proceedings of Seventh
Text REtrieval Conference (TREC-7). 149–156.

Quinlan, J. R. 1986. Induction of decision trees. Machine Learning 1, 1
(March), 81–106.

Quinlan, J. R. 1993. C4.5: Programs for Machine Learning (Morgan Kauf-
mann Series in Machine Learning), 1 ed. Morgan Kaufmann.

Quinlan, J. R. 1996. Improved use of continuous attributes in c4.5. Journal
of Artificial Intelligence Research 4, 77–90.

Rifkin, R. and Klautau, A. 2004. In defense of one-vs-all classification.
Journal of Machine Learning Research 5, 101–141.

Riley, M. 1993. Functions of the gene products of escherichia coli. Microbiol.
Mol. Biol. Rev. 57, 4, 862–952.

Rubin, D. 1996. Multiple imputation after 18+ years. Journal of the American
Statistical Association 91, 434, 473–489.

Rubin, D. B. 1987. Multiple Imputation for Nonresponse in Surveys. John
Wiley & Sons, New York.

Sarinnapakorn, K. and Kubat, M. 2007. Combining subclassifiers in text
categorization: A dst-based solution and a case study. IEEE Transactions
on Knowledge and Data Engineering 19, 12, 1638–1651.

Schietgat, L., Vens, C., Struyf, J., Blockeel, H., Kocev, D., and

Dzeroski, S. 2010. Predicting gene function using hierarchical multi-label
decision tree ensembles. Bmc Bioinformatics 11.

Schneider, T. 2001. Analysis of incomplete climate data: Estimation of mean
values and covariance matrices and imputation of missing values. Journal of
Climate 14, 853–871.

Schölkopf, B., Burges, C. J. C., and Smola, A. J., Eds. 1999. Advances
in kernel methods: support vector learning. MIT Press, Cambridge, MA,
USA.

Sebastiani, F. 2006. Classification of text, automatic. In The Encyclopedia
of Language and Linguistics , Second ed., K. Brown, Ed. Vol. 2. Elsevier
Science Publishers, Amsterdam, NL, 457–463.

Secker, A., Davies, M. N., Freitas, A. A., Timmis, J., Mendao, M.,
and Flower, D. R. 2007. An experimental comparison of classification al-
gorithms for hierarchical prediction of protein function. 3rd UK Data mining
and Knowledge Discovery Symposium UKKDD 2007 Canterbury , 1318.

Shafer, J. C., Agrawal, R., and Mehta, M. 1996. SPRINT: A scalable
parallel classifier for data mining. VLDB’96 , 544–555.

www.manaraa.com

181

Shanahan, J. G. and Roma, N. 2003. Boosting support vector machines for
text classification through parameter-free threshold relaxation. In CIKM
’03: Proceedings of the twelfth international conference on Information and
knowledge management. ACM, 247–254.

Shwartz, S. and Srebro, N. 2008. Svm optimization: inverse dependence
on training set size. In Proceedings of the 25th international conference on
Machine learning. ACM, 928–935.

Silla, C. and Freitas, A. 2010. A survey of hierarchical classification across
different application domains. Data Mining and Knowledge Discovery .

Snoek, C. G. M., Worring, M., van Gemert, J. C., Geusebroek,

J. M., and Smeulders, A. W. M. 2006. The challenge problem for auto-
mated detection of 101 semantic concepts in multimedia. In MULTIMEDIA
’06: Proceedings of the 14th annual ACM international conference on Mul-
timedia. ACM, New York, NY, USA, 421–430.

Stein, L. 2001. Genome annotation: from sequence to biology. Nat Rev
Genet 2, 7, 493–503.

Stenger, B., Thayananthan, A., Torr, P. H. S., and Cipolla, R.

2007. Estimating 3d hand pose using hierarchical multi-label classification.
Image Vision Comput. 25, 12, 1885–1894.

Sun, A. and Lim, E.-P. 2001. Hierarchical text classification and evaluation.
In Proceedings of the 2001 IEEE International Conference on Data Mining.
ICDM ’01. IEEE Computer Society, Washington, DC, USA, 521–528.

Sun, A., Lim, E.-P., and Liu, Y. 2009. On strategies for imbalanced text clas-
sification using svm: A comparative study. Decision Support Systems 48, 1,
191–201.

Tan, P.-N., Steinbach, M., and Kumar, V. 2005. Introduction to Data
Mining. Addison Wesley.

Thabtah, F. A., Cowling, P., and Yonghong, P. 2004. Mmac: a new
multi-class, multi-label associative classification approach. In Proceedings of
the Fourth IEEE International Conference on Data Mining (ICDM ’04).
217–224.

Trohidis, K., Tsoumakas, G., Kalliris, G., and Vlahavas, I. 2008.
Multilabel classification of music into emotions. In Proceedings of the 9th
International Conference on Music Information Retrieval (ISMIR 2008),
Philadelphia, PA, USA, 2008.

Tsoumakas, G. and Katakis, I. 2007. Multi-label classification: An
overview. International Journal of Data Warehousing and Mining 3, 3, 1–13.

Twala, B. 2009. An empirical comparison of techniques for handling incom-
plete data using decision tree. Appl. Artif. Intell. 23, 5, 373–405.

www.manaraa.com

182

van Rijsbergen, C. J. 1979. Information Retrieval , 2 ed. Butterworths, Lon-
don.

Vateekul, P., Dendamrongvit, S., and Kubat, M. 2011. Improving svm
performance in multi-label domains: Threshold adjustment. International
Journal on Artificial Intelligence Tools (IJAIT). (Submitted and In Pro-
cess).

Vateekul, P. and Kubat, M. 2009. Fast induction of multiple decision trees
in text categorization from large scale, imbalanced, and multi-label data.
In ICDMW ’09: Proceedings of the 2009 IEEE International Conference on
Data Mining Workshops. Miami, FL, USA, 320–325.

Vateekul, P., Kubat, M., and Sarinnapakorn, K. 2012. Hierarchical
multi-label classification with svms: a case study in gene function prediction.
IEEE Transactions on Knowledge and Data Engineering (TKDE). (Submit-
ted and In Process).

Vateekul, P. and Sarinnapakorn, K. 2009. Tree-based approach to miss-
ing data imputation. In ICDMW ’09: Proceedings of the 2009 IEEE Inter-
national Conference on Data Mining Workshops. IEEE Computer Society,
Miami, FL, USA, 70–75.

Vateekul, P. and Shyu, M.-L. 2008. A conflict-based confidence measure
for associative classification. In Proceedings of the IEEE International Con-
ference on Information Reuse and Integration, IRI 2008, M. IEEE Systems
and C. Society, Eds. 256–261.

Vens, C., Struyf, J., Schietgat, L., Dzeroski, S., and Blockeel,

H. 2008. Decision trees for hierarchical multi-label classification. Machine
Learning 73, 2, 185–214.

Wang, K., Zhou, S., and He, Y. 2000. Growing decision trees on support-
less association rules. In KDD ’00: Proceedings of the sixth ACM SIGKDD
international conference on Knowledge discovery and data mining. 265–269.

Weinert, W. R. and Lopes, H. S. 2004. Neural networks for protein clas-
sification. Applied Bioinformatics 3, 1, 41–48.

Williams, N., Zander, S., and Armitage, G. 2006. A preliminary per-
formance comparison of five machine learning algorithms for practical ip
traffic flow classification. ACM SIGCOMM Computer Communication Re-
view 36, 5 (Oct.), 5–16.

Winkler, W. E. 2003. Methods for evaluating and creating data quality.
Information Systems 29, 531–550.

Yan, L., Xei, D., and Du, Z. 2009. A new method of support vector machine
for class imbalance problem. In Proceedings of the 2009 International Joint
Conference on Computational Sciences and Optimization. 904–907.

www.manaraa.com

183

Yang, Y. 1999. An evaluation of statistical approaches to text categorization.
Information Retrieval 1, 1/2, 69–90.

Yang, Y., Zhang, J., and Kisiel, B. 2003. A scalability analysis of classifiers
in text categorization. In Proceedings of the 26th annual international ACM
SIGIR conference on Research and development in informaion retrieval. SI-
GIR ’03. ACM, New York, NY, USA, 96–103.

	University of Miami
	Scholarly Repository
	2012-04-21

	Hierarchical Multi-Label Classification: Going Beyond Generalization Trees
	Peerapon Vateekul
	Recommended Citation

	main.dvi

